
VOLUME 4 | 2023 ISACA JOURNAL 1© 2023 ISACA. All rights reserved. www.isaca.org

A Candid Look at the Shifting Landscape of
Change Management for Audit

Change management is one of the
fundamental parts of any enterprise IT
environment. The effectiveness of change
management controls has a direct impact

on overall enterprise risk. In this era of fast-paced
technological advancement, organizations are
adopting automation to streamline their processes.
For automated systems to operate effectively and
achieve the desired outcomes, it is essential to have
sophisticated change management controls.

Although the improper use of software engineering
tools has the potential to open avenues that can be
easily exploited by malicious actors, it would be a
gross misstatement to say that the responsibility for
change management is limited only to the engineering
department. The compliance department has
an obligation to educate the board and executive
management about the importance of implementing
a robust change management process. As the
auditees, it is important for the engineering and DevOps
teams to understand the effects of improper change
management practices.

Auditors also play a key role when auditing artifacts
related to sophisticated tools to obtain reasonable
assurance of the effectiveness of new change
management controls. It is essential for all audit
stakeholders to learn the industry’s common flaws
and the latest technical controls to easily adapt to
new change management audit practices.

Common Practices for Auditees
Code repository tools, continuous integration/
continuous delivery (CI/CD) tools and change
documentation are important building blocks of
engineering change management. The actions of
the auditees using these elements have a direct
impact on the effectiveness of the enterprise change
management practice.

Code Repositories and Continuous Integration
and Deployment
Code repository tools are commonly used to store
source code and control versions of code. As

organizations move toward automation, it is increasingly
important to use the branch rule protection settings
offered by code repository and version control software.
Branch rule protection settings serve as a powerful
configuration to enforce segregation of duties (SoD).
They enable administrators to prevent any kind of
unauthorized changes from being merged to the
main branch.

A common flaw is allowing engineers to modify the
branch rule settings at will. This flaw nullifies the
purpose of the branch rule protection settings. If
allowed, an engineer could change the number-of-
reviewers requirement to zero to bypass the reviewer
requirement when merging changes to the main
branch. This opens the potential for engineers or bad
actors to act maliciously and deploy their
own changes without authorization—violating the
SoD requirement.

KISHAN SATHYANAR AYANAN | CISA, CCSFP

Is a senior manager of third-party attestation practice at BDO LLP. He
has a decade of experience in the accounting industry, including with the
Big Four accounting firms. He has worked with clients in the Asia Pacific
region, Europe and the United States. He specializes in information systems
audit and has experience with clients in industries such as the cloud,
cybersecurity, finance, entertainment, healthcare, manufacturing and
blockchain technology.

VOLUME 4 | 2023 ISACA JOURNAL 1

FEATUREFEATURE

2 ISACA JOURNAL VOLUME 4 | 2023 © 2023 ISACA. All rights reserved. www.isaca.org

deployed after necessary approvals were obtained
and if SoD was maintained. The tickets usually serve
as a transcript of the conversation between the
engineers working on a specific change. The change
reviewer usually logs the approval as part of the
conversation in these tickets. When approvals are
not explicit, the auditor must clarify the context of the
conversation with the specific engineers to determine
whether approval was obtained. This task takes
longer when the sample size of changes tested and
the number of samples with insufficient information
are high. The compliance team that oversees the
audits should encourage the engineering teams to
improve the quality of change documentation. If the
reviewer, tester (as needed) and developer deliver
explicit information, the amount of time spent during
audits can be significantly reduced.

Another common practice is obtaining approval for a
change via an instant messaging platform. Although
some organizations retain instant messaging chat
logs for more than a year, others delete them after
60 to 90 days. If the chat transcripts are retained, the
engineering teams can produce evidence to show the
auditors from the archives. However, these approvals
can get lost, or they may offer no evidence to support
the change approval at the time of audit. Therefore,
it is important for stakeholders to discourage the
practice of obtaining approvals via instant messaging
and document them in the change tickets so there
is a single source of evidence. This makes the audit
process more efficient and saves precious time
during the audit.

Responsibilities of Auditors
With the advent of new automated software
engineering tools, the responsibilities of change
management auditors have changed. It is important
for auditors to understand these changes and plan
their audit approach as applicable, including:

•	 Taking a holistic approach to change management
(The practice of solely relying on the population
collected from the ticketing system and testing
those tickets may not be sufficient.)

•	 Understanding the chain of the process (i.e.,
development, test, deployment and rollbacks)

•	 Understanding the review requirements of each
repository in scope and the automated controls in
place to enforce the segregation of duties

Enterprises that are serious about implementing
a robust change management process should
encourage implementation of stronger controls to
prevent engineers from making rogue changes. It is
important for repository administrators to limit the
number of users with the ability to modify branch rule
protection settings.

CI/CD is the ongoing delivery of applications to
customers with the help of automation. CI/CD
introduces automation that makes the phases
of change management perpetual. CI/CD brings
together the development and operations teams to
work in an Agile manner. CI/CD tools serve as some
of the busiest pipelines of change management with
continuous builds and deployments. One common
practice is failing to terminate containers and virtual
machines after tasks are completed. To reduce the
probability of attacks, it is important to remove these
tools when they are not necessary and use them in
read-only mode whenever possible.

Code repositories often contain sensitive information
that is used to run an enterprise. Robust and secure
change management practices prevent code
repositories from becoming a breeding ground
for hackers. Some of the best practices used by
organizations with mature change management
environments include:

•	 Implementation of alerting tools to notify all
administrators whenever a rule set is modified

•	 Requirement to seek the approval of another
administrator before modifying rule sets for any
critical purposes

•	 Monthly or quarterly administrative review of
the code repository log to flag any unauthorized
merges or changes

Change Documentation
Change tickets usually serve as the primary evidence
auditors use to determine whether changes were

With the advent of new automated software
engineering tools, the responsibilities of change
management auditors have changed.

LOOKING FOR
MORE?

•	 Read IT Audit
Fundamentals Study
Guide.
www.isaca.org/
it-audit-fundamentals-
study-guide

•	 Learn more about,
discuss and collaborate
on audit and assurance
in ISACA’s Online
Forums.
https://engage.isaca.org/
onlineforums

VOLUME 4 | 2023 ISACA JOURNAL 3© 2023 ISACA. All rights reserved. www.isaca.org

of automated deployments, it is critical for auditors
to understand how the changes are reviewed and
merged to the main branch.)

•	 Ensuring that the production data are not used in
any form whatsoever in the test or development
environment

•	 Performing the traditional testing of access
provisioning, access deprovisioning and user and
admin access review testing despite all other due
diligence, such as examination of logs and point-in-
time user listings

Conclusion
Change management is a dynamic and evolving
part of audit and is therefore one of the highest risk
areas of an audit. The approach taken by an auditor
to address change management risk should be
less about checking boxes and more about using
professional judgement. The range of engineering
tools used by each organization is different, so it is
essential for auditors to learn the features of new
software engineering tools in a timely manner and
frame their change management audit approaches
accordingly. The knowledge developed helps auditors
evaluate whether a meaningful level of assurance has
been obtained while auditing the artifacts related to
new types of change management controls. At the
same time, enterprises should focus on maturing
their change management practices rather than
simply passing an audit. Mature change management
practices help enterprises better position themselves
to face new regulations and reduce the risk of future
security threats.

•	 Examining the list of users who have developer and
administrator access to each repository in scope
(This will also help clarify which users can modify
the rule sets of each repository.)

•	 Learning which users have access to the
production environment and determining which
have privileged access to both the production
environment and deployment tools, plus the code
repository tools (It may not always be a red flag
to see a user with privileged access to both the
code repository and the production environment
because the DevOps teams have multidisciplinary
skill sets and they work on a continuous-loop
model to manage the application life cycle through
the development, test, deploy, operate and repeat
phases.)

•	 Studying the activity log generated from the code
repository tools (If any suspicious activities or
rogue merge or modifications of automated rule
sets are noted in the log, necessary due diligence
should be undertaken to understand the reasons
behind these activities.)

•	 Studying the log of all users added and removed
to the code repository tools and production and
deployment tools during the audit period (The list
of users obtained at a point in time may not give
a clear picture of whether any unauthorized users
gained access to critical tools during the audit,
even for a short period of time, because it only
captures new users and not removed users or
temporary users.)

•	 Determining the best source to generate the
population of changes that were deployed to the
production environment (Every ticket entry of a
population generated from a general ticketing
system may not have impacted the production
environment. It is important to figure out the best
source to get the complete and accurate list of
changes that impacted the production environment.)

•	 Remembering the traditional requirement of
maintaining SoD for any changes that reach the
production environment (At a minimum, more
than one person should be aware of the changes
deployed to the production environment. In an era

Mature change management
practices help enterprises better
position themselves to face new
regulations and reduce the risk
of future security threats.

