
Protecting ICS Software With Secure
Coding Practices

Industrial control systems (ICSs) are cyberphysical
information systems used to control a wide variety
of industrial processes ranging from manufacturing,
product handling and production to distribution of

utilities and monitoring of transportation. Industrial
control systems include supervisory control and
data acquisition (SCADA) systems used to control
geographically dispersed assets as well as distributed
controls systems (DCSs) and smaller control systems
using programmable logic controllers (PLCs) to
control localized processes. Regardless of the type
and application of an ICS, software is the central
component in controlling and monitoring critical
infrastructure and industries around the world,
including the distribution of electricity and water, the
manufacturing of volatile chemicals, and the safe
operation of mass transit.1 Failure to protect this
software from cyberattacks can lead to serious global
consequences ranging from economic disruptions
to environmental damage and the loss of human life.
Therefore, it is essential that such software be secure
and reliable.

Software vulnerabilities in general have increased
as much as 70 percent year over year in the period
between 2000 and 2010.2, 3 Today’s ICS software
incorporates many common off the shelf (COTS)
and open-source elements (e.g., Windows operating
systems and modern programming frameworks such
as Java and .Net) but operational constraints often
prevent the incorporation of security patches and
version upgrades. Thanks to exposure to the Internet,
an increase in cyberattacks and the extensibility of
modern programming frameworks, ICS software is
particularly vulnerable (figure 1), making the adoption
of secure coding procedures critical.4

Developers can no longer depend on the existence of
ideal circumstances for the execution of their code
due to platform mobility and continually evolving
system environments.5 They must accept that risk
is pervasive and adopt secure coding practices
that align with the overall software development life
cycle, resulting in clear security strategies or security
development life cycles.6, 7, 8 This strategy must
include defining security use cases,9, 10 predicting
threats,11, 12 and performing risk analyses before the
implementation of any specific coding practices.13, 14
In 2011, the US Department of Homeland Security
(DHS) found that almost half of all vulnerabilities
identified in ICS software could be addressed by a
single secure coding technique.15 The adoption of

MATTHEW J. SCOTT | CICP, CM, LEAN SIX SIGMA BLACK BELT

Is a technology leader at a regional high-capacity public transit agency serving the greater Seattle, Washington, USA, area. He delivers
innovative solutions addressing the challenges of operating, maintaining and securing legacy industrial control systems for high-
demand transit assets, and combines traditional industrial automation with IT deployment strategies. Through industry and market
research, road maps and engagement with customers and fellow automation builders, he creates a close, team-oriented problem-
solving environment, resulting in improvements to industrial control systems software security, reliability and quality while respecting
the constraints inherent in critical infrastructure.

VOLUME 2 | 2023 ISACA JOURNAL 53

FEATUREFEATURE

FIGURE 1

Sources of ICS Software Vulnerabilities

Sources: Adapted from Michard, I.; “How Secure Equipments in Your ICS Network Need to Be? An Approach to
Select the ‘Just Secure Enough’,” 46th Annual Institute of Electrical and Electronics Engineers (IEEE)/International
Federation for Information Processing (IFIP) International Conference on Dependable Systems and Networks, 2016,
Toulouse, France, https://hal.archives-ouvertes.fr/hal-01318167; US Department of Homeland Security, Common
Cybersecurity Vulnerabilities in Industrial Control Systems, USA, May 2011, https://www.cisa.gov/uscert/sites/
default/files/recommended_practices/DHS_Common_Cybersecurity_Vulnerabilities_ICS_2010.pdf; and Common
Weakness Enumeration (CWE), “Viewing Customized CWE Information,” https://cwe.mitre.org/index.html

Improper
Input

Validation

Poor
Code

Quality

• Buffer overflows, format strings
• Structure and validity problems
• Common special element
 manipulations
• Channel and path errors
• Handler errors
• Pathname traversal and
 equivalence errors
• Authentication errors
• Insufficient data verification
• Code injection
• Randomness and predictability

47
percent

8
percent

45
percent

54 ISACA JOURNAL VOLUME 2 | 2023

requirements stage of software development are
routine and repetitive, every instance of a functional
feature can have both apparent and nascent
vulnerabilities that necessitate an explicit set of security
requirements. The development of security use
cases—or abuse cases—that define how the system will
react during a security exploitation exposes nascent
vulnerabilities.23 These security use cases determine
the levels of protection required to maintain the security
of each instance of software functional features, and
the relevance of security for each instance depends on
how important it is to the overall function of the system
and the access required by both internal and external
system actors. Throughout the security requirements
stage, all functional system threats and vulnerabilities
must be identified and listed to enable threat modeling
in the design stage.24

Design
The design stage of the security development life
cycle, like the software design life cycle, is where
success or failure is ultimately determined. Although
some threats and vulnerabilities may have been
identified in the security requirements stage, it
is possible that others exist.25 Security errors or
omissions occurring in the design stage are unlikely
to be successfully resolved in later stages. Even if
they are resolved, the costs of rework—including
redevelopment and retesting, and possible loss of
system availability—increase with each successive
stage until the errors are finally addressed. In the
design stage, the threats to the system and associated
vulnerabilities are identified and defined. Feedback
from actual operational security exploitations must
be included in the design exercise. Threat modeling
and risk analysis ensure that the design is free from
the root causes of previous exploitations. Design
complexity is an indicator of potential vulnerabilities;
thus, the design stage seeks to lessen complexity
to ensure security.26 The design stage produces
specifications and documentation to guide the

secure coding practices for ICS software
ensures secure and reliable systems, regardless
of their surroundings.16

Securing ICS software requires a strategic approach.
Simply applying secure coding practices during or after
the writing of code (i.e., defense coding) is a key part
of ICS software security, but it is not enough because
it results in only incremental improvements in security
in the absence of a comprehensive strategy.17, 18, 19 The
best way to secure ICS software is to apply a security
perspective throughout the software development
life cycle—from design to code development through
verification and operation.20, 21 Applying a three-step
process for ICS secure coding can facilitate more
resilient protection of critical infrastructure through ICS
software with security by design, not merely
as an afterthought.

Security Development Life Cycle
The security development life cycle (figure 2) is a
result of applying a security perspective based on
lessons learned to the software development life
cycle—specifically, to the requirements, design,
coding, and testing and operation stages of software
development. This is what the software engineering
profession labels security by design.22

Requirements
Throughout requirements development, each functional
feature (e.g., control loop, alarm handling procedure,
controlled shutdown routine) of the software identified
must be evaluated from a security perspective.
Although many functional features defined in the

Throughout requirements
development, each functional
feature…of the software
identified must be evaluated
from a security perspective.

VOLUME 2 | 2023 ISACA JOURNAL 55

• Authentication functions to identify uncharacteristic
messages from networked PLCs or supervisory
system servers (equivalence and privilege)

The specific defensive programming techniques
utilized derive from the best mitigation of the abuse
cases identified in the requirements and design phase.

Testing and Operation
There are two steps to the testing stage of the security
development life cycle. First, standard security testing
is conducted. Then additional testing based on the
risk analysis and threat modeling from the design
stage is conducted. Specific threats are simulated, and
all testing traces back to security requirements and
security use or abuse cases. Penetration testing (pen
testing) is part of this stage. It is conducted first in the
factory acceptance test (FAT) where the production
environment is simulated using artificial inputs or
forcing logic completion. While this test is conducted
in a controlled and offline environment, external
experts are utilized to review the code execution and
conduct realistic attempts to exploit vulnerabilities.

Following shipment and installation, pen testing
is conducted a second time in the operational
environment. Real inputs are utilized with production

selection and use of coding methods and procedures
that ensure a level of security that matches the
functionality and features of the system. The resultant
threat modeling and risk analysis then feed into the
testing stage to verify security against specific threats
and vulnerabilities, in addition to standard testing.27

Coding
The security development life cycle enhances the
coding stage of the software development life cycle
with the use of specific coding techniques and
procedures.28 Original equipment manufacturers
(OEMs) and developers in the ICS industry label
this “defense programming.”29 These programming
and coding practices are based on the results
of the requirements and design stages of the
security development life cycle.30 Among defensive
programming techniques are:

• Simple validation tests of all field equipment input
signals for out-of-range values

• Rate-of-change comparisons of control output
signals or remote setpoints (randomness
and predictability)

• More complex error-checking of values resulting
from a calculation for register overflows resulting
in rounding errors

FIGURE 2

Security Development Life Cycle

Source: Adapted from Howard, M.; D. Leblanc; Writing Secure Code, 2nd Edition, Microsoft, USA, 2002, http://www.microsoft.com/MSPress/books/
5957.aspx9780735617223

Security use
cases as part
of functional

feature
requirements

Security
Development

Life Cycle

Vulnerability
exploits and
abuse cases

Defense
Programming:
• Review known
 vulnerabilities.
• Employ secure
 techniques.

External
expert review

and initial
penetration (pen)

test

External
expert review

and site
pen test

Security
features and
vulnerability
use cases

Security
expert

independent
review

Process and
security

expertise in
design team

Continual
vulnerability
monitoring,

patching and
upgrades

Go LiveInstallInitial Code
Ready

Test
Procedures

Design
Ready

Requirements
Ready

Unit Tests
Operating

Testing
Factory Test Acceptance Test

Requirements Design Coding

Establish
code

environment.

Define rule
sets.

Verify
initial code.

56 ISACA JOURNAL VOLUME 2 | 2023

architectural vulnerabilities outright or, if a software
functional feature demands use of a weak element,
apply industry verified mitigations (workarounds or
preventive measures) to alleviate the vulnerability. The
final step is to select software analysis tools to verify
the code. These tools must be capable of configuration
for the specific code base and established coding rules.
Selecting these tools in the initial step prevents the
discovery of a lack of capability during final verification.

Defining the Appropriate Security Rule Sets
This step ensures the fulfillment of common security
requirements using common identical coding. It
requires the cataloging of security requirements
by type, including software functional feature
characteristics and risk. The master rule set catalog
controls all coding activities. All coders should
be familiar with the master rule set catalog prior
to commencing any coding. Configuration of the
verification tool occurs with the rule sets for use in
scanning the initial code.

Verifying the Initial Completed Code
The preconfigured verification tool scans all code to
determine adherence to the master rule sets. There
may be architectural elements or custom security
controls that the verification tool cannot analyze.
Therefore, a secure coding expert must manually
review all ICS software.

Conclusion
Because it controls much of today’s critical
infrastructure, it is essential that ICS software
be developed using secure coding practices. For
secure coding practices to be effective, a security
development life cycle is required. This security
development life cycle expands and enhances the
software development life cycle by ensuring an
explicit focus on security during the requirements,
design, coding, and testing and operation stages. The
result is ICS software that is secure by design.

Endnotes
1 Michard, I.; “How Secure Equipments in Your

ICS Network Need to Be? An Approach to
Select the ‘Just Secure Enough’,” 46th Annual
Institute of Electrical and Electronics Engineers
(IEEE)/ International Federation for Information
Processing (IFIP) International Conference
on Dependable Systems and Networks, 2016,
Toulouse, France, https://hal.archives-ouvertes.fr/
hal-01318167

assets operating, and vulnerability exploitation
attempts are conducted from outside the system
and facility utilizing live network interfaces and
operating telecommunications if indicated. All pen
testing is guided by the risk analysis output from the
design stage, and it is the best indicator of the actual
performance of the secure coding practices employed.

The security development life cycle does not end
when the software becomes operational. All actual
exploitations in operational systems must be
documented. The details of these exploitations provide
feedback that can be used in threat modeling for
software upgrades or new deployments of software.

Secure Coding Practices
Secure coding practices are the heart of the security
development life cycle. However, they must align with the
results of the requirements and design stages to ensure
that the selected practices will secure the specific
software for specific purposes. There are three steps in
the employment of secure coding practices:31

1. Establish the security coding environment.

2. Define the appropriate rule sets.

3. Verify the initial code.

Establishing the Security Coding Environment
This first step is project- or function-specific. First,
collect the security requirements identified during
the design stage. Then select the code base. The
software functional feature security requirements are
key factors in the selection of a code base.32 Once the
code base has been selected, it must be evaluated for
known vulnerabilities and weaknesses. International
security standards such as the Open Web Application
Security Project (OWASP),33 Common Weakness
Enumeration (CWE)34 and US National Institute of
Standards and Technology (NIST) National Vulnerability
Database (NVD)35 are repositories of code base and
architectural vulnerabilities and weaknesses found by
code developers around the world. Consulting these
repositories can help teams eliminate software and

Because it controls much of today’s critical
infrastructure, it is essential that ICS software be
developed using secure coding practices.

VOLUME 2 | 2023 ISACA JOURNAL 57

Complexity Metrics,” ESEM ‘08: Proceedings
of the 2008 ACM-IEEE International Symposium
on Empirical Software Engineering and
Measurement, 2008, p. 315–317, https://doi.org/
10.1145/1414004.1414065

13 Op cit McGraw
14 Op cit Howard and Leblanc
15 Op cit Michard
16 Op cit Howard and Leblanc
17 Ibid.
18 Op cit Michard
19 Op cit Howard and Leblanc
20 Ibid.
21 Op cit Epstein
22 Op cit Howard and Leblanc
23 Op cit Epstein
24 Op cit Howard and Lipner
25 Op cit Chowdhury and Zulkernine
26 Ibid.
27 Op cit Epstein
28 Ibid.
29 Op cit Michard
30 Op cit Howard and Leblanc
31 Op cit Michard
32 Op cit Howard and Lipner
33 The Open Web Application Security Project

(OWASP), https://owasp.org
34 Common Weakness Enumeration (CWE),

https://cwe.mitre.org
35 National Vulnerability Database (NVD), National

Institute of Standards and Technology (NIST), USA,
https://nvd.nist.gov

2 McGraw, G.; “Building Secure Software: Better
Than Protecting Bad Software,” IEEE Software, vol.
19, iss. 6, 2002, p. 57–58, https://doi.org/10.1109/
MS.2002.1049391

3 Chowdhury, I.; M. Zulkernine; “Using Complexity,
Coupling, and Cohesion Metrics as Early
Indicators of Vulnerabilities,” Journal of Systems
Architecture, vol. 57, iss. 3, 2011, p. 294–313,
https://doi.org/10.1016/j.sysarc.2010.06.003

4 Ibid.
5 Howard, M.; D. Leblanc; Writing Secure Code,

2nd Edition, Microsoft, USA, 2002,
https://www.microsoftpressstore.com/store/
writing-secure-code-9780735617223

6 Op cit Michard
7 Howard, M.; S. Lipner; The Security Development

Lifecycle, Microsoft Press, USA, 2006,
https://doi.org/10.1109/tim.1969.4313808

8 Mohaddes Deylami, H.; I. Ardekani; R. C. Muniyandi;
H. Sarrafzadeh; “Effects of Software Security
on Software Development Life Cycle and
Related Security Issues,” International Journal
of Computational Intelligence and Information
Security, vol. 6, iss. 8, 2015

9 Op cit Howard and Leblanc
10 Op cit Chowdhury and Zulkernine
11 Chowdhury, I.; M. Zulkernine; “Using Complexity,

Coupling, and Cohesion Metrics as Early
Indicators of Vulnerabilities,” Journal of Systems
Architecture, vol. 57, iss. 3, 2011, p. 294–313,
https://doi.org/10.1016/j.sysarc.2010.06.003

12 Shin, Y.; L. Williams; “An Empirical Model to
Predict Security Vulnerabilities Using Code

EMPOWER YOUR TEAM.
POWER YOUR BUSINESS.

To learn how ISACA can empower your team,
visit us at www.isaca.org/enterprise-jv2

Enterprise_Jv2_2023_half-page.indd 1Enterprise_Jv2_2023_half-page.indd 1 2/6/23 3:23 PM2/6/23 3:23 PM

ENJOYING THIS
ARTICLE?

• Learn more about,
discuss and collaborate
on information and
cybersecurity in
ISACA’s Online Forums.
https://engage.isaca.org/
onlineforums

