
API Sprawl and Emergence

For those not chartered with digital trust in
their organizations, emergence might be
thought of as just a cool trick. They might
point to a beehive, anthill or rush hour

traffic with wonder at how simple, straightforward
behaviors, in aggregate and at scale, have
ramifications that are challenging to predict in
advance from observation of a single bee, ant or
commuter. It would be hard, for example, to predict
the formation of a hive just by observing the behavior
of a few individual bees. But when you put thousands
of bees together, their (seemingly) simplistic
behaviors result in something elegant, unique and
completely unexpected.

For those of us in the professional disciplines ISACA®

serves, however, emergence is a potential source of
risk. Aristotle (one of the first known philosophers

to discuss emergence) said in his Metaphysics, “The
totality is not, as it were, a mere heap, but the whole is
something besides the parts.”1

By this, he meant that the parts of a complex system
go beyond what is predictable and observable and
result in something unforeseen. These unforeseen
outcomes represent a blind spot in our ability to plan
and can undermine security or privacy, make it
harder to provide validation, or decrease the
effectiveness of governance.

Example: Legacy VM Sprawl
To illustrate this point, consider the example of virtual
machine (VM) sprawl. I have picked this example
carefully for three reasons. First, it is familiar. Anyone
who remembers the rise of the virtual data center
or anyone making extensive use of Infrastructure as
a Service (IaaS) (or hybrid cloud) has likely seen it
in action. Second, it is not a new problem, so many
professionals will have seen or built countermeasures
designed specifically to address the challenges
that result from it. Third, it is directly analogous to a
new issue that I think we must start looking at more
carefully.

For those unfamiliar with VM sprawl, it refers to the
uncontrolled or semicontrolled proliferation of VM
images within a virtualization context such as a virtual
data center or an IaaS cloud environment. There are
a number of reasons why this happens. Individuals
and teams create new VM images and use them for
their intended purposes, but they perhaps do not
provide timely or direct feedback on when those VMs
can be decommissioned. Administrators are often
uncomfortable removing workloads, so they allow them
to persist. Also, environments subjected to extensive
physical-to-virtual (p2v) migration likewise may have
sprawl resulting from the legacy environments.

This is a problem for several reasons. Images
serialized for long periods of time (i.e., that are spun
down and not currently running) can become stale
as critical security patches and updates are missed,
making them a prime target for security issues when
they are brought back up. VM images are also mobile
(e.g., vMotion), meaning they can cross segmentation
boundaries between environments or bring about

ED MOYLE | CISSP

Is currently director of Software and Systems Security for Drake Software.
In his 20 years in information security, Moyle has held numerous positions
including director of thought leadership and research for ISACA®,
application security principal for Adaptive Biotechnologies, senior security
strategist with Savvis, senior manager with CTG, and vice president
and information security officer for Merrill Lynch Investment Managers.
Moyle is co-author of Cryptographic Libraries for Developers and Practical
Cybersecurity Architecture, and a frequent contributor to the information
security industry as an author, public speaker and analyst.

8 ISACA JOURNAL VOLUME 2 | 2023

THE BLEEDING EDGETHE BLEEDING EDGE

VOLUME 2 | 2023 ISACA JOURNAL 9

in the future. Think about it from a developer’s point
of view. Imagine a web service has been created to
accomplish a particular piece of business logic. The
API that was built works so well it starts being used
by other internal web applications and other APIs.
Perhaps another team develops a mobile application
(app) that employs it after more time elapses.

From the developer’s point of view, this is great. But
what happens next? Say the developer needs to
change an API from using HTTP GET to using HTTP
POST, or wants to change the URL on which it is
hosted, or wants to change the signature (i.e., number
and content of inputs or the type and format of
outputs.) It can be difficult to do these things because
of the other components that have the API as a
dependency. Sure, developers can deprecate the old
version of the API and create a new update. But since
it is actively being used, they may feel pressure to not
do so or to retain both the new and the old version of
the interface. Hence the sprawl.

Emergent and risk-undermining behavior can arise
in a few different ways given this backdrop. Under
DevOps and/or DevSecOps, where changes to
software can be particularly fast-paced, the order
in which APIs are called can change literally from
day to day. Likewise, with technologies such as
service mesh (e.g., Istio) or API concentrators (e.g.,
KrakenD), the complexity compounds as indirection is
introduced, either via the concentrator or via “sidecar”
reverse proxy (e.g., under service mesh).

With the use of security or assurance controls that
assume a static ordering of what is called and when,
this will absolutely have a significant impact. As an
example, application threat modeling is one such
control that normatively assumes a constant and
static path through the application logic. In fact, threat
modeling normally begins with the creation of a data
flow diagram. This means that the starting point
for threat modeling is the execution path through
components. But what happens when that pathway
is ever-changing? To say that it undermines threat
modeling is a significant understatement.

intermingling in unexpected ways. The rate at which
images tend to proliferate creates administrative
overhead associated with keeping the environment
managed and organized as inventory accuracy
decays and the purpose of specific VM images
becomes lost over time.

While these issues are perhaps not directly what
Aristotle meant in his description, they do reinforce
the idea that predicting this behavior in advance is
challenging. So, if a practitioner had never worked with
virtualization at scale, it would be difficult to know that
these challenges would arise.

In the enterprise, people deployed strategies to combat
sprawl, for example, authoring scripts to automatically
delete VM images if inventory records and usage
information were not kept current. Vendors developed
solutions designed to address exactly these problems:
everything from controls built into hypervisor systems
to help with management and record keeping of
the virtual environment to controls that assist with
mitigation of specific technical problems (e.g., patching
stale images, enforcing segmentation). The practitioner
community developed strategies to address sprawl
and organizations such as ISACA and others worked to
disseminate those strategies to others to the point that
now, while the problem can still arise, practitioners have
become largely hardened against it.

API Sprawl
Over time, we have seen similar situations arise
in other areas. For example, there has also been
cloud sprawl (used variously to describe not only
proliferation of IaaS workloads but also Software as
a Service [SaaS] and Platform as a Service [PaaS]
relationships), container sprawl (as in application
containers from tools such as Docker and others),
storage sprawl (think cloud storage), and so forth.
As one might have guessed, we are now seeing a
new situation develop with similar dynamics in play
for many and on the near-term horizon for others:
specifically, application programming interface (API)
sprawl or the uncontrolled proliferation of REST
APIs—APIs that conform to the design principles of
the representational state transfer architectural style
(REST)—web services and other similar technologies.

Who cares about APIs you ask? You should, for
several reasons. First, there is a tendency for APIs
to get created without a clear plan on the part of
developers for how they will get decommissioned

There is a tendency for APIs to get created
without a clear plan on the part of developers for
how they will get decommissioned in the future.

10 ISACA JOURNAL VOLUME 2 | 2023

Additionally, while uncontrolled use of service mesh,
API gateways and the like can compound confusion,
they can help reduce or alleviate that confusion when
used in a controlled way. Instead of having to track
and maintain where APIs are hosted, for example, the
practitioner can use service mesh or API gateways
to keep track of where APIs are hosted at any given
point in time. In this way, they can be used as an
authoritative source of truth for where individual APIs
live and where and how they are being used.

Lastly, it can often be helpful for practitioners to
gain some familiarity with knowing how to test
APIs. Open source tools such as OWASP’s ZAP5 or
SoapUI6 can provide information for the practitioner
willing to dig deeper. Because APIs use HTTP/s as
their transport mechanism, practitioners with a solid
understanding of HTTP can fairly easily understand
the mechanics of how most APIs are called. For
those with less experience in this arena, HTTP is a
fairly simple protocol—one that is advantageous for
practitioners to know. The skill base to understand
API functionality is fairly readily built for those
desirous of learning.

Regardless of how practitioners choose to engage
with the many APIs in their scope, it is important that
they begin to factor APIs into their planning. APIs
are not only intrinsic to how modern applications are
built, but also potential sources for emergent, and
thereby unexpected, behavior.

Endnotes
1 Aristotle; Metaphysics, Book VIII, Greece, 350 BC,

translated by W. D. Ross, http://classics.mit.edu/
Aristotle/metaphysics.8.viii.html

2 Note that the HTTP “Referer” header is spelled
incorrectly in the governing specification
(RFC 1945). As the misspelling is part of the
specification and is reflected in actual browser
behavior (in conformance with the specification,
browsers also preserve the misspelling), it is
reproduced verbatim here for accuracy.

3 GitHub, Redocly/redoc, https://github.com/
Redocly/redoc

4 GitHub, swagger-api/swagger-ui, https://github.com/
swagger-api/swagger-ui

5 ZAP, OWASP Zed Attack Proxy (ZAP),
https://www.zaproxy.org/

6 SoapUI, Accelerating API Quality Through Testing,
https://www.soapui.org/

A second behavior to examine here is the
intersection between APIs and the technology
used to access them. Consider an API that uses
the GET verb and requires callers to submit input
via query parameters—for example, a request
such as https://api.exampleorg.dom/process
UserData?username=testuser&supersecretvalue=
somesecret. From a risk perspective, that call is
problematic. Many (including me) would argue that
using GET in this way is almost always problematic
for a variety of reasons, but it is particularly
problematic when called from a browser. Why?
Because the browser will, by default, cache the
values (including the secret value) in the history, and
normative browser behavior will be to include the
referring URL for any downstream request. If there is
a landing or callback page after that API that sources
content hosted off site (e.g., images, fonts, JavaScript
libraries), any such requests will include the full URL
given in the “Referer”(sic)2 header value. Given the
presence of a secret value in the query parameters,
obviously neither caching of the value nor relaying it
to third parties is desirable.

Depending on the particular environment, there can
be dozens of behaviors introduced that one might
not expect. They are generally less visible from a
security, audit and governance perspective for several
reasons. First, because many organizations spend
comparatively less time on application security than
other technology areas. Second, it can require
some investigation to actually find, understand
and look in depth into the APIs used within the
organization for developed software, integrations with
commercial off-the-shelf (COTS) software, software
customizations, software used to support business
partner relationships, etc.

On the plus side, knowing what to look for helps
practitioners to arm themselves and minimize
potential negative outcomes. And it turns out there
are a few things they can do. First and foremost,
practitioners can lean into making sure that they
have documentation for the APIs in use. In addition
to commercial tools, open source tools such as
Redoc3 and Swagger UI4 help generate consistent
API documentation. Assuming developers play ball
by authoring documentation consistently, these tools
can help practitioners understand what APIs do, what
they are for, and how they are used.

ENJOYING THIS
ARTICLE?

• Learn more about,
discuss and collaborate
on emerging
technology in ISACA’s
Online Forums.
https://engage.isaca.org/
onlineforums

