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New solutions help innovative enterprises succeed 
in an ever-changing, increasingly competitive digital 
economy. These solutions can empower 
enterprises to activate and extract value from 
sensitive data and engender trust by preserving the 
privacy of customers and employees. This enables 
enterprises to use private data—including their 
application in advanced analytics, machine learning 
(ML) and artificial intelligence (AI)—effectively 
without worrying about putting customers, 
employees or intellectual property at risk. 

Enterprises can gain an edge over less innovative 
competitors by understanding how using ML on 
protected data is beneficial, how recent advances in 
quantum computing can significantly impact 
opportunities and threats to new and historical data, 
and how current and future technologies and a 
longer-term road map with future technologies can 
optimize and protect ML code. All of this propels 
enterprises forward by giving them a competitive 
advantage over less innovative competitors. 

Secure AI-Extracting Value From 
Protected Data 
Secure AI solutions create opportunities to harness 
the sensitive data that are proven to be most 
effective in activating advanced analytics and ML. 
With the confidence that sensitive data are 
protected, enterprises can quickly extract value, 
apply insights in real time and predict outcomes 
that accelerate growth. Sensitive data should be 
secured wherever they are and whatever they are—
in the cloud or on-premises, at rest or in use—so 
they can be leveraged across the enterprise by 
frontline employees, analytics teams and anyone 
who needs the information to make business 
decisions. Data know no boundaries nor should 
data protection. Whether encrypting, tokenizing or 
applying privacy methods, the solution should 
secure the data behind the many operational 
systems that drive the day-to-day functions of the 
enterprise and the analytical systems behind 
decision-making, personalized customer 
experiences and AI modeling. 

Case Study: Reducing Fintech Risk With Data 
Protection Tools 
Anonymization is one way to minimize the risk of 
identification. 

Anonymization is a nonreversible method of data 
protection that can advance data-intensive business 
applications, such as analytics, by using differential 
privacy or k-anonymity. 

In the example in figure 1, a bank requiring credit 
card approval for a transaction by a customer 
reduced the privacy risk from 26 percent to 8 
percent and provided 98 percent accuracy 
compared to the initial ML model. 

This approach can be used for analysis, insight, 
dashboarding, reporting, predictions, forecasts, 
simulation and optimization with values to be 
expected in savings and revenue adds. 
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Another data protection technique in ML models is 
pseudonymization, which is a reversable approach 
that can be based on encryption or tokenization. 
Encryption uses mathematical algorithms and 
cryptographic keys to change data into binary 
ciphertext, and tokenization substitutes cleartext 
data with a deterministic random string of 
characters. Figure 2 illustrates the positioning of 
some characteristics of different protection 
approaches. 

Differential Privacy 
Differential privacy is a form of field-level data 
masking designed such that data can be used for 
querying aggregate statistics while limiting the 
exposure of individuals’ specific information.1 

Differential privacy is a rigorous mathematical 
definition that emerged from lengthy work applying 
algorithmic ideas to the study of privacy. In the 
simplest setting, this algorithm analyzes a data set 
and computes statistics about it (such as the data 
set’s mean, variance, median and mode) and it is 
differentially private—looking at the output, one 
cannot tell whether any individual’s data were 
included in the original data set. In other words, the 
guarantee of a differentially private algorithm is that 
its behavior hardly changes when a single individual 
joins or leaves the data set; anything the algorithm 
might output on a database containing an individual’s 
information is almost as likely to have come from a 
database without that individual’s information. This 
guarantee holds for any individual and any data set; 

Figure 1—Anonymization Process to Reduce the Risk of Identification
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Figure 2—Positioning Characteristics of Different Data Protection Techniques 
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therefore, regardless of how eccentric any single 
individual’s details are and the details of anyone else 
in the database, the guarantee of differential privacy 
still holds. This means that individual-level 
information about participants in the database is not 
leaked. This approach supports data sharing 
scenarios and can be applied to processing data in 
untrusted environments.2 

Synthetic Data 
Synthetic data are used for a nonreversible 
approach to generating microdata artificially to 
represent a predefined statistical data model.3 By 
definition, a synthetic data set does not contain any 
data collected from or about existing data 
principals, but the data look realistic for the 
intended purposes. If the synthetic data fit the 
original data too closely, they can reveal information 
about the genuine data principals, such as personal 
data. There are various ways to create synthetic 
data. Theoretically, data can be generated randomly 
based on a number of selected statistical 
properties. Key characteristics of such a model are 
the distributions of each attribute (overall and in 
subpopulations) and the internal relationships 
among the attributes. In practice, the generation of 
synthetic data can involve multiple or continuous 
transformations on real data sets using 
randomization techniques and sampling. Typically, 

synthetic data are used for testing tools and 
applications, for developing queries, in some 
applications and as surrogates for real data. The 
data curator should reproduce queries performed 
on synthetic data on actual data to ensure that 
inferences drawn on the synthetic data are correct 
when drawn on real data. The privacy guarantees of 
synthetic data can be evaluated using the 
differential privacy model.4 

Anonymization in Healthcare 
K-anonymity can be used to generalize data. The k-
anonymity model ensures that groups smaller than 
“k” individuals cannot be identified. Queries will 
return at least “k” number of records. K-anonymity is 
a formal privacy measurement model that ensures 
that for each identifier there is a corresponding 
equivalence class containing at least “k” records. 
For k-anonymity to be achieved, there needs to be at 
least “k” individuals in the data set who share the 
set of attributes that might be identifying for  
each individual.5 Figure 3 shows an example of  
k-anonymity. 

K-anonymity might be described as a “hiding in the 
crowd” guarantee: If each individual is part of a 
larger group, then any of the records in this group 
could correspond to a single person.6 Figure 4 
shows the data anonymized. This is achieved by 
generalizing some quasi-identifier attributes and 
redacting some others. 

Synthetic Data in Fintech 
When historical data are not available or when the 
available data are not sufficient because of lack of 
quality or diversity, organizations rely on synthetic 
data to build models. A random sample of any 
distribution can be generated. The utility of 
synthetic data varies depending on the analyst’s 
degree of knowledge about a specific data 
environment. Fitting real data to a known 
distribution by generating synthetic data can be 
done to generate synthetic data. There are also 
various tools such as the CA Technologies 
Datamaker and the Informatica Test Data 
Management Tool that can be used to generate 
data. Static derivation of real data to synthetic data 
can provide data that are not regulated but highly 
useful for sharing with third parties (figure 5).7 

Quantum Computing: The Pros and Cons 
There are pros and cons to using quantum 
computers. Quantum computers can improve 

“ A SYNTHETIC DATA SET DOES NOT CONTAIN 
ANY DATA COLLECTED FROM OR ABOUT 
EXISTING DATA PRINCIPALS, BUT THE DATA LOOK 
REALISTIC FOR THE INTENDED PURPOSE. ”



ISACA JOURNAL VOL 6 19

Figure 4—K-Anonymity Applied to a Data Set

Identifier Quasi Identifiers Confidential Attributes

Civic Number Gender Age Post Code Wage Affiliation

*   M 40 94*** 22 Socialist

*   M 38 94*** 33 Conservative

*   M 42 94*** 44 Conservative

*   F 22 90*** 55 Socialist

*  F 26 90*** 43 Conservative

*  F 24 90*** 32 Socialist

Figure 5—Static Derivation of Real Data to Synthetic Data
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Figure 3—Sample Data Set

Identifier Quasi Identifiers Confidential Attributes

Civic Number Gender Age Post Code Wage Affiliation

123-55-1321 M 22 94123 22 Socialist

321-33-4321 F 26 94321 33 Conservative

876-89-6543 M 24 94654 44 Conservative

345-56-6789 M 40 90222 55 Socialist

876-34-4322 F 38 90654 43 Conservative

837-45-1256 F 42 90876 32 Socialist
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performance in computing, some quantum ML 
algorithms can be optimized for quantum 
computers, and quantum computers can break 
algorithms and patterns in encrypted data, in 
particular public key cryptography. Figure 6 
illustrates how some of these techniques are 
related. In a scenario where an organization is using 
analytics in ML models, the organization likely 
wants to protect some sensitive data ML models 
that it runs in the cloud. This can be done with a 
trusted executing environment (TEE). 

Homomorphic Encryption and Quantum Computing 
New homomorphic encryption (HE) algorithms can 
be secure from quantum computer-based attacks, 
and ML algorithms can be optimized for quantum 
computers.8 HE, which allows computations on 
encrypted data, and ML are growing in popularity. 
Both HE and quantum computing can be applied to 
provide privacy and security for sensitive data and 

confidential ML models in vulnerable environments, 
such as different cloud models. The EU General 
Data Protection Regulation (GDPR), the US State of 
California Consumer Privacy Act (CCPA) and other 
regulations already enacted—with more sure to 
come—only stress the need for enterprises to 
protect their data. Data must move in a protected 
form through an enterprise’s many hybrid cloud 
databases and applications. The cloud can be used 
with AI to reinvent how organizations make 
decisions. The types of data that are most critical in 
driving innovation—with advanced analytics, ML and 
AI—are those deemed most sensitive and, therefore, 
they must be safeguarded. ML models and data in 
them can be shielded in TEEs. A TEE is similar to a 
hardware security module (HSM) but faster and 
typically not evaluated against US National Institute 
of Standards and Technology (NIST) Federal 
Information Processing Standard (FIPS) 140 
requirements. This is complementing protection 
provided by encryption of the nonlinear ML models 
and data for outsource environments, such as 
different cloud models and IoT devices. Linear ML 
models can be protected by HE with reasonable 
performance degradation. Nonlinear ML models 
can be extremely slow when protected with 
homomorphic encryption. 

Figure 6—Scenario With Data Protection for Analytics
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“ THE CLOUD CAN BE USED 
WITH AI TO REINVENT HOW 
ORGANIZATIONS MAKE 
DECISIONS. ”
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Opportunities With Q  uantum Computing  
HE and ML allow enterprises to use sensitive data 
to fuel advanced analytics, ML and AI, even as those 
initiatives migrate to cloud environments.9 This 
leads to opportunities as well as threats with 
current and future computers. 

Quantum Computers Can Break Blockchain and 
Public-Key Cryptography 
One of the biggest challenges surrounding digital 
technology is securing systems and data. For 
decades, computer scientists have worked to 
develop increasingly sophisticated algorithms 
designed to encrypt data and protect them through 
frameworks such as public-key cryptography (PKE), 
which is also known as asymmetric cryptography.10 
These frameworks function relatively well, and 
billions of transactions and interactions use these 
algorithms every day. 

As quantum computers advance and creep into the 
mainstream, they introduce a level of computing 
power that raises the stakes.11 Although there are 
many potential benefits, a major disadvantage is the 
ability to crack today’s PKE, including widely used 
Rivest-Shamir-Adleman (RSA) and Diffie-Hellman 
frameworks. This impacts everything from routers 
and virtual private networks (VPN) to the ability to 
verify digital signatures. 

In 2016, the US National Security Agency (NSA) 
issued an alert and recommended that 
organizations begin looking at ways to switch to 
more advanced cryptography. A year later, NIST 
began soliciting new and more advanced 
algorithms that could withstand cracking by 
quantum computers and become standard.12 

Quantum computers lack the processing power to 
succeed in a brute-force assault on classical 
cryptography algorithms. However, in a few years, 
once these machines hit a threshold of approximately 
10 million physical qubits, they will possess this 
power. The risk is palpable for enterprises, 
universities and governments. If quantum computers 
crack PKE algorithms, more than just devices would 
be affected; an enterprise’s historical data could be 
exposed. Consequently, mathematicians and 

computer scientists are developing new and far 
more advanced cryptographic algorithms that use 
both classical and lattice-based frameworks.13 The 
former relies on noncompact code; the latter uses 
mathematical formulas or proofs to ensure the 
integrity of the algorithm. In fact, lattice-based 
algorithms are part of a broader move toward 
formal (verified) software. 

Threats With Current Computers 
Outside of quantum computers, current Intel Xeon 
computers are also a threat to RSA encryption. The 
security of RSA relies on the practical difficulty of 
factoring the product of two large prime numbers 
(the factoring problem). Breaking RSA encryption is 
known as the RSA problem. Factoring is 
demonstrated by an RSA key that has 240 decimal 
digits and a size of 795 bits.14 

For the short term, enterprises can keep safe from 
improvements in Intel processors and similar 
processors by moving to at least 2048-bit RSA, 
Diffie-Hellman or DSA keys. Although Transport 
Layer Security (TLS) negotiation times are slower 
with a larger key, it is likely only noticeable on busy 
sites. Most sites that are busy enough for the 
slowdown to affect it can likely afford to buy or rent 
the hardware needed to help support it. For short-
term use, Curve25519 can be used; it is very fast 
and is unaffiliated with NIST. It is the approximate 
equivalent of 128-bit Advanced Encryption Standard 
(AES) encryption. 

Blockchain Security 
Although it may not be as inherent as some believe, 
resilience is one of the main motivations for 
enterprises to use blockchain technology.15 

“ QUANTUM SUPREMACY, 
WHICH DESCRIBES THE 
POINT IN TIME WHEN 
QUANTUM COMPUTERS 
EXPLICITLY OUTPERFORM 
CLASSIC ONES, IS ON THE 
VERGE OF REALIZATION. ”
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Blockchain relies on Internet connectivity and public 
key infrastructure (PKI) based on symmetric 
encryption such as RSA algorithms. The blockchain 
framework relies on the security of the 
cryptographic processes underlying it. Without 
trusted hash functions and public key signatures, 
there can be no blockchains. Quantum computers 
threaten several of the cryptographic primitives used 
in blockchains. Scalable quantum computers, which 
are necessary to attack the mathematical problems 
behind the cryptographic primitives, are not yet 
available; however, small-scale quantum computers 
have already been built by several enterprises and 
governments. Some are even accessible on the 
Internet and can be used to test quantum algorithms. 
Quantum supremacy, which describes the point in 
time when quantum computers explicitly outperform 
classic ones, is on the verge of realization, if not 
already attained. Therefore, it is important to 
understand the threat posed to blockchains and to 
outline possible solutions. 

Quantum-Resilient Algorithms 
Within the next couple of years, NIST is expected to 
finalize new standards for quantum-resilient 
algorithms. 

For now, enterprises can prepare for this next phase 
of cryptography by staying updated on the NIST 
initiative and keeping an eye on breaking news in 
the field. It is not too early to begin assessing 
systems and devices and considering when and 
where quantum-resilient algorithms make sense. In 
many cases, enterprises will need to update 
certificate management frameworks, devices and 
software to support new algorithms. It is also a 
good idea to upgrade older systems to 256-bit keys 
to maximize data protection. 

Fortunately, symmetric-key cryptography (which 
relies on private keys) is not as susceptible to being 
cracked by quantum computing and is not 
considered at risk for now. However, it is impossible 
to rely on symmetric key cryptography to handle 
many of the interactions and transactions that take 

place in today’s computing environment. Once 
quantum-safe algorithms appear, it would be wise 
to migrate to them as soon as possible.  

Many PKE algorithms rely on extremely large 
numbers that are the product of two prime 
numbers. Other encryption algorithms base their 
security on the difficulty of solving certain discrete 
logarithm problems. With sufficiently big enough 
key sizes, there is no known way to crack the 
encryption they provide. The factoring of the large 
numbers and the computing of a discrete logarithm 
defeat the cryptographic assurances for a given key 
size and force users to ratchet up the number of 
bits of entropy they use. 

Post-quantum cryptography research focuses on 
six different approaches:16 

Lattice-based cryptography—This approach 1.
includes cryptographic systems such as learning 
with errors (LWE), ring learning LWE, the ring LWE 
key exchange, the ring LWE signature, the older 
NTRU or Goldreich-Goldwasser-Halevi (GGH) 
encryption schemes, and the newer NTRU 
signature and Bimodal Lattice Signature Scheme 
(BLISS) signatures. 

Multivariate cryptography—This includes 2.
cryptographic systems such as the Rainbow 
Unbalanced Oil and Vinegar (UOV) scheme, 
which is based on the difficulty of solving 
systems of multivariate equations. Various 
attempts to build secure multivariate equation 
encryption schemes have failed. 

Hash-based cryptography—This includes 3.
cryptographic systems such as Lamport 
signatures and the Merkle signature scheme and 
the newer eXtended Merkle Signature Scheme 
(XMSS) and SPHINCS schemes. Hash-based 
digital signatures were invented in the late 1970s 
and have been studied ever since as an 
interesting alternative to number-theoretic digital 
signatures such as RSA and Digital Signature 
Algorithm (DSA).  

Code-based cryptography—This includes 4.
cryptographic systems that rely on error-
correcting codes, such as the McEliece and 
Niederreiter encryption algorithms and the 
related Courtois, Finiasz and Sendrier signature 
scheme. The original McEliece signature using 
random Goppa codes has withstood scrutiny for 
more than 30 years.  

“ IN MANY CASES, ENTERPRISES WILL NEED 
TO UPDATE CERTIFICATE MANAGEMENT 
FRAMEWORKS, DEVICES AND SOFTWARE TO 
SUPPORT NEW ALGORITHMS. ”
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Supersingular elliptic curve isogeny 5.
cryptography—This cryptographic system relies 
on the properties of supersingular elliptic  
curves and supersingular isogeny graphs to 
create a Diffie-Hellman replacement with  
forward secrecy.  

Symmetric key quantum resistance—If a 6.
sufficiently large key size is used, the  
symmetric key cryptographic systems such as 
Advanced Encryption Standard (AES) and  
SNOW 3G are already resistant to attacks by 
quantum computers. 

Beyond Breakable Encryption 
The US State Department and several other US 
government agencies mandated the move from 
128-bit AES to 256-bit AES and the cessation of 
certain secure hashes associated with 256-bit 
AES.17 Figure 7 is an example of a cryptography 
road map in preparation for quantum computing. 

The Road to Randomness 
Quantum computers and other strong computers 
can break algorithms and patterns in encrypted 
data. Alternatively, random numbers can be used to 

secure sensitive data, as they are not based on an 
algorithm or pattern. 

Random numbers should be validated by the NIST 
statistical test suite for random numbers. NIST 
Special Publication (SP) 800-22 offers 15 statistical 
tests that assess the presence of a pattern that, if 
detected, indicates that the sequence is 
nonrandom.18 The focus of the test is the proportion 
of zeros and ones for the entire sequence. The 
purpose of the test is to determine whether the 
number of ones and zeros in a sequence are 
approximately the same as would be expected for a 
truly random sequence. The test suite includes 
tests for frequency and approximate entropy. 

Figure 7—Example of a Cryptography Road Map

Time
frame Area Comment

Short Upgrade to AES, preferably AES-256 with strong random seed Immediate-medium step

Short Use SHA-512 for hashing Immediate step

Short Short use stateful hash-based signatures for signing Immediate review

Short Use hybrid cryptography to protect against both weaknesses in RSA/
ECC and potential weaknesses in post-quantum algorithms

Immediate steps

Medium Lattice-based algorithms Tools study and integration plan

Medium HE Tools and partner integration

Medium Operation on encrypted data Integration of protocols

Medium Secure multiparty computing (SMPC) Integration of protocols

Medium 2022 NIST to complete review safe algorithms Tools integration

Medium 2022 NIST standards to be released Tools integration

Long 2024 industry standards based on NIST algorithms from NIST 
Standards

Tools integration

Long Analytics and ML ML algorithms optimized for 
quantum processors

Long Full industry adoption 2019+ Tools integration

“ THE BLUE TOKENS 
REPRESENT TEMPORARY 
RESULTS AND THE FINAL 
TOKEN VALUES ARE  
GREEN. ”
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Building a Token Fabric of Protected Data Elements 
Protecting short data is always a challenge, since 
the entropy or variation of possible values is small. 
A fabric can be used to increase the entropy when 
protecting short data. A fabric of intermediate data 
tokens that replaces the clear text data can be 
created. These are randomized values where each 
layer gradually increases the entropy of each final 
token that will replace the original input data.  
Figure 8 is an example of a token fabric of 
intermediate tokens. The blue tokens represent 
temporary results and the final token values  
are green. 

A tokenization function based on randomized 
lookup tables can be used. The chaining of tokens 
can add entropy via additional input data to the 
tokenization process in each step. Figure 9 is an 
example of short data with a two-character input-
string (“AA”) that will generate the middle layer 
tokens that are temporary results and the final 
tokens on the bottom layer. Each token is based on 
unique initialization values and is chained forward 
and backward with the others to increase high 
entropy and randomness. The security of the 
specific design and implementation should be 
validated by leading experts and universities. 

Conclusion 
Innovative enterprises can stay competitive by 
implementing solutions that help extract value from 
sensitive data. New techniques such as TEE and 
tokenization fabrics make it possible for enterprises 
to securely use private information—including its 
application in advanced analytics, ML and AI—to be 
successful without worrying about putting customers, 
employees or intellectual property at risk. 

Commonly implemented solutions do not provide 
strong protection from quantum computers. Proper 
planning for and understanding of available 
technologies such as tokenization fabrics and 
enhancement options offered by evolving 
technologies of quantum computers can provide 
realistic approaches to data protection that give 
enterprises a competitive advantage over less 
innovative competitors. 

Endnotes 
Zhao, J.; T. Jung; Y. Wang; X. Li; “Achieving 1
Differential Privacy of Data Disclosure in the 
Smart Grid,” IEEE Conference on Computer 
Communications, Toronto, Canada, April 2014 

Figure 9—Example of Chaining to Add
Entropy to the Tokenization Process

Alpha Numeric Input “AA”

Token chaining forward

A A

? ≤

≥ ≤ Token chaining back

Input

Temporary
Output

Output

Figure 8—Example of a Fabric of Intermediate Tokens

Code Point

First Token

First Token

First Token

Code Point

Second Token

Second Token

Code Point

Third Token

“ COMMONLY 
IMPLEMENTED SOLUTIONS 
DO NOT PROVIDE STRONG 
PROTECTION FROM 
QUANTUM COMPUTERS. ”



ISACA JOURNAL VOL 6 25

Nayak, C.; “New Privacy-Protected Facebook 2
Data for Independent Research on Social 
Media’s Impact on Democracy,” Facebook 
Research, 13 February 2020, 
https://research.fb.com/blog/2020/02/ 
new-privacy-protected-facebook-data-for-
independent-research-on-social-medias- 
impact-on-democracy/ 
Reiter, J. P.; “Using CART to Generate Partially 3
Synthetic, Public Use Microdata,” Journal of 
Official Statistics, vol. 21, iss. 3, January 2005 
Watson, A.; “Using Generative, Differentially-4
Private Models to Build Privacy-Enhancing, 
Synthetic Datasets From Real Data,” Medium,  
2 March 2020, https://medium.com/ 
gretel-ai/using-generative-differentially-private-
models-to-build-privacy-enhancing-synthetic- 
datasets-c0633856184 
Privitar, “K – Anonymity: An Introduction,”  5
7 April 2017, https://www.privitar.com/blog/ 
k-anonymity-an-introduction/ 
Ibid. 6
Sarkar, T.; “Synthetic Data Generation—A Must-7
Have Skill for New Data Scientists,” Towards 
Data Science, 19 December 2018, 
https://towardsdatascience.com/synthetic-data-
generation-a-must-have-skill-for-new-data- 
scientists-915896c0c1ae 
Mattsson, U.; “New Technologies for Data 8
Protection That Arm Innovative Businesses  
to Win,” ISACA® San Francisco Chapter 
(California USA), USA, 21 April 2021, 
https://engage.isaca.org/sanfranciscochapter/ 
events/eventdescription?CalendarEventKey= 
7fc789f0-0538-4887-a6e0-8668bcdc68c1& 
CommunityKey=f510bd50-4fdc-46b1-a329-
d6ce8a64bae7&Home=%2Fcommunities%2 
Fcommunity-home%2Frecent-community-events 
Mattsson, U.; “Homomorphic Encryption  9
Will Take on the Challenge of AI,” RSA 
Conference, 25 February 2021,  
https://www.rsaconference.com/Library/blog/ 
Homomorphic%20Encryption%20Will%20Take 
%20on%20the%20Challenge%20of%20AI 
The National Academies Press, Decrypting the 10
Encryption Debate: A Framework for Decision 
Makers, USA, 2018 

IBM, “Quantum Computing: Tomorrow’s 11
Computing Today,” https://www.ibm.com/ 
quantum-computing/?p1=Search&p4= 
43700050386405608&p5=b&gclsrc=aw.ds& 
gclid=EAIaIQobChMIuLe0jcOR8AIVhrLICh1lCQZ
0EAAYASAAEgI2avD_BwE 
National Institute of Standards and Technology 12
(NIST), “NIST Kicks Off Effort to Defend 
Encrypted Data From Quantum Computer 
Threat,” USA, 28 April 2016,  
https://www.nist.gov/news-events/news/ 
2016/04/nist-kicks-effort-defend-encrypted-
data-quantum-computer-threat 
The National Academies Press, Quantum 13
Computing: Progress and Prospects, USA, 2019 
Goodin, D.; “New Crypto-Cracking Record 14
Reached, With Less Help Than Usual From 
Moore’s Law,” Ars Technica, 12 March 2019, 
https://arstechnica.com/information-
technology/2019/12/new-crypto-cracking- 
record-reached-with-less-help-than-usual-from-
moores-law/ 
Deloitte, “Security Controls for Blockchain 15
Applications,” https://www2.deloitte.com/ch/ 
en/pages/risk/articles/security-controls-for-
blockchain-applications.html 
Raffaelli, F.; R. Denman; R. Collins; J. C. 16
Faugere; G. De Martino; C. Shaw; J. Kennard;  
R. Sibson; L. Perret; C. Erven; “Combining a 
Quantum Random Number Generator and 
Quantum-Resistant Algorithms Into the 
GnuGPG Open-Source Software,” Advanced 
Optical Technologies, vol. 9, iss. 5, 2020 
Op cit Goodin 17
Rukhin, A.; J. Soto; J. Nechvatal; M. Smid;  18
E. Barker; S. Leigh; M. Levenson; M. Vangel;  
D. Banks; A. Heckert; J. Dray; S. Vo; A Statistical 
Test Suite for Random and Pseudorandom 
Number Generators for Cryptographic 
Applications, National Institute of Standards 
and Technology (NIST) Special Publication (SP) 
800-22, USA, 2010, https://nvlpubs.nist.gov/ 
nistpubs/Legacy/SP/nistspecialpublication 
800-22r1a.pdf




