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Recent advances in machine learning (ML) and 
artificial intelligence (AI) have raised new 
awareness and concerns of algorithms, including 
their uses and misuses and their potential and 
limitations. It is important for practitioners, 
specifically auditors, to understand what algorithms 
are and why they matter, that smart algorithms are 
not new, and the decisive role humans have in 
algorithm design and metrics. It is the auditor’s job 
to ask questions using the correct tools, interpret 
results and remember that errors are possible even 
with the most advanced algorithms. 

Algorithms Are and Have Always Been 
Everywhere 
The term “algorithm” is typically associated with 
mathematicians and computer scientists and is, 
therefore, often considered too specialized and 
advanced for the layman to understand. However, in 
essence, an algorithm is a recipe—one way of solving 
a specific problem that anyone could understand, for 
instance, when babies solve their needs for 
nourishment, pain management or attention by 
crying. An algorithm can be as simple as “If hungry, 
then cry.” Similarly, algorithms are used for solving 
every type of activity from cooking to driving to 
troubleshooting or to diagnosing a medical condition. 
Whether it is thought of it this way or not, every time 
humans solve a problem, no matter how simple or 
complex it appears to be, they are using an algorithm. 
This algorithm may have been invented by others and 
passed along or developed out of need. 

An algorithm does not have to be complex. All 
algorithms are not equal—there are better and 
worse ways of solving a problem, and there may be 
trade-offs for each variation. For example, 
programming the solution of a second-order 
algebraic equation using the discriminant formula is 
not a good way to solve the problem with a 
computer.1 Similarly, if a program’s workspace fits 
in memory, it is typically significantly more efficient 
to avoid the use of a database altogether. This is 
not practical or possible if a large amount of data 

needs to be used. The point is that what may be 
fast and easy with one algorithm may be 
prohibitively slow or even impossible with another. 

The feasibility of potentially game-changing 
technological advances is critically dependent on 
finding an efficient algorithm that makes 
computations fast. An example is homomorphic 
encryption, which enables the manipulation of 
encrypted data without the need to convert them to 
cleartext first.2 However, this greatly complicates 
the operations that must be performed. 

The same concept applies to audits. Like any 
activity, audits involve tasks such as checking “as 
is” vs. the “as should be” situations or finding 
correlations, which may be broken into smaller 
subtasks. Checking the “as is” vs. the “as should be” 
situations imply an algorithm to: 

Obtain the “as is” and “as should be” versions •
Perform whatever operations are needed to •
enable a comparison 
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Perform the comparison •
Assess the results and their significance •

A complete algorithm involves a detailed 
prescription of all of the general tasks and how to 
perform each of the subtasks. All the complexity 
and sophistication should not obscure the fact that 
an algorithm is just a recipe, or simply one way to 
tackle a problem, even if it is sophisticated or 
intelligent. Highly sophisticated and intelligent 
algorithms that can recognize and change their way 
of solving problems have existed for many years. 
For instance, adaptive solvers of differential 
equations can adjust their time step or method of 
attack using explicit or implicit methods depending 
on the problem. 

Algorithm Design and Metrics: Humans 
Are Important 
A computer and the algorithms it employs to solve 
problems are merely following programmed 
prescriptions. This is also true for intelligent 
algorithms that can learn. Even highly advanced 
programs able to solve problems for which 
intelligence is needed are following prescriptions, 
probably with an elaborate feedback mechanism. In 
fact, the more intelligent the algorithm, the more 
specialized it typically is. However, both the input 
data and the relevant features the algorithm 
considers are determined by the user and 
programmer, and this must be taken into account 
when interpreting the output. 

For instance, if a computer is given information on 
existing cars, their characteristics and their history 
and is asked to find correlations between 
characteristics and accidents, the characteristics 
chosen to be processed by the algorithm are 
crucial. If maximum speed, brake quality and other 
factors are not included in the characteristics 
processed, then the results may include spurious 

correlations. For example, the results may find a 
correlation between car color and traffic accident 
propensity where one does not actually affect the 
other. Similarly, if an auditor analyzes thefts in a 
branch or across branches but fails to record the 
monetary values of the items involved, then the 
analysis is likely to miss very important information 
and conclusions may be flawed. 

Domain expertise is vitally important in designing 
algorithms. Someone tasked with designing a 
solution should at least be able to formulate the 
problem and outline the key characteristics of its 
solution, no matter how complicated the details 
may be. A number of algorithms, such as decision 
trees, can easily overfit and find spurious 
correlations without some type of guidance. This 
guidance can range from defining acceptable 
tolerances to including or excluding pieces of 
information, such as car color. This raises the issue 
of possible bias (i.e., ignoring or weighing 
potentially less important factors that do not fit the 
auditor’s experience, presumptions or prejudices). 
In the previous example, why should the auditor 
consider the monetary value of items stolen and not 
their color? It is possible that the thief may choose 
to steal items of a certain color. The fact that a 
domain expert would choose the monetary value as 
a relevant characteristic but not the color of the 
stolen items or the manufacturer is an example of 
bias, as relevant characteristics are the projections 
of the auditor’s experience, reasoning and beliefs. 
This is unavoidable and is also the case in many 
industries. For example, when studying cause and 
effect, only a limited number of possible causes are 
considered. Even the most convincing scientific 
experiments need an underlying theory to test  
(i.e., effect X depends on parameters A, B and C). In 
another example, when letting an object drop to test 
gravity, most people theorize about the force, speed 
and acceleration. That is, there must first be a 
hypothesis regarding the force and not whether the 
day is sunny or cloudy, for example, that  
determines the fall of the object. No experiment can 
handle an infinite number of possible causes. 
Similarly, in devising an elaborate algorithm to 
check for correlations and, ultimately, solve a 
problem, there can be a wide range of factors  
(e.g., monetary value, manufacturer, color). No 
algorithm can handle an infinite number of 
variables, which, in principle, may be related in a 
causal way to the end effect. 

“ A COMPLETE ALGORITHM 
INVOLVES A DETAILED 
PRESCRIPTION OF ALL OF 
THE GENERAL TASKS AND 
HOW TO PERFORM EACH OF 
THE SUBTASKS. ”
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Particularly in ML, algorithms must be trained, and 
the training is what determines the algorithm’s 
performance. This training can be compared to 
teaching a child. If a child has been trained in one 
area, for instance farming, the child will typically 
perform well in tasks related to farming and not as 
well in unfamiliar subjects. If there is bias in training 
(i.e., unimportant factors feature heavily and 
important factors are not featured all), especially 
with relatively small training sets, those trained 
algorithms will have a built-in bias. For example, a 
child who has never been exposed to a dangerous 
animal has only the notion of friendly animals. 
Similarly, if an algorithm is shown a number of 
hospitals and their costs for medical supplies and 
both the majority of the hospitals and hospitals with 
excessive costs are children’s hospitals, then the 
algorithm may conclude that there may be a 
connection between children and excessive 
supplies. In other words, if an algorithm is to learn 
(from data), there is no such thing as bias-free 
learning. The best expectation is a pluralistic 
algorithm that allows multiple data sources. 

The bias in algorithms has no relation to the much 
more biased versions of history of different countries 
as discovered in past or present conflicts. There is a 
very good reason for this—algorithm designers are 
typically interested in covering as large a range of 
cases as possible, so that even if a rare case is 
encountered, the algorithm handles it well. When 
people talk about algorithmic bias, they typically 
mean bias in the data fed to the algorithm, using the 
incorrect algorithm to solve a problem or using an 
algorithm on a data set where it performs poorly. 

Because a certain amount of bias in data is 
unavoidable, it is important to check for it. Just as 
scientists try to push theories to their limits to test 
them and then revise if necessary, human 
assumptions should also be tested, especially if a 
positive result has been produced. For example, in the 
car color case, a researcher can discover if different 
age groups with the same car color have similar 
accident rates. If not, then the car color is not the 

deciding factor. Similarly, in the hospital example, one 
might check the average cost for all children’s 
hospitals and the average cost for general hospitals. 

Another important issue is the necessary data. 
Algorithms operate on data. To prove or disprove a 
hypothesis such as a cost-benefit analysis or 
determine whether there is fraud in reporting, an 
algorithm needs data—not just any data, but the 
data that are necessary for answering the specific 
problem. Algorithms do not create this data—it is 
the job of humans to make sure that the algorithm 
has all the necessary information and data to solve 
the problem. Poor planning may lead to using 
whatever data are available to answer a problem for 
which the available data are inadequate or 
irrelevant. Even if the exact problem has not yet 
surfaced, planning to have the kind of data needed 
to answer classes of problems is essential. 

Humans judge the relative successes or failures of 
algorithms. In many cases, one algorithm is not 
necessarily better than another, but it may be more 
robust or more suitable for a particular situation. A 
well-known example in numerical analysis is the use 
of implicit solvers (only) for stiff problems (i.e., 
improve the stability and, therefore, ensure 
correctness of the solution by solving a system of 
equations with a much larger time step). 

For instance, matching algorithms can return false 
positives or false negatives. Typically, this is a 
product of fine-tuning the algorithm’s parameters, 
such as acceptable error tolerances. The definition 
of acceptable depends on the application. If the 
cost of investigating false positives outweighs the 
benefit, then it might make sense to accept more 
false negatives if that means having significantly 
fewer false positives. 

In functions such as fraud detection, using a 
watchdog algorithm to identify fraud cases, it is not 
desirable to be alerted for every encounter. The 
algorithm is instead set to tolerate some fraud (if 
the cost of investigating outweighs the potential 
loss) and concentrate on the more important cases. 
The same algorithm that performs well in this 
situation may be unsuitable in a situation with many 
positives. In a situation with a handful of true cases 
per day, an algorithm that effectively introduces as 
many false negatives is still acceptable since the 
cases to be investigated are manageable. On the 

“ IF AN ALGORITHM IS TO 
LEARN (FROM DATA), THERE 
IS NO SUCH THING AS  
BIAS-FREE LEARNING. ”
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other hand, hundreds of daily cases introducing as 
many or more false negatives may mean having to 
double staff to investigate the false positives. 

Figure 1 illustrates the concept by comparing 
susceptibility and sensitivity in four different 
algorithms. Susceptibility is the tendency to raise a 
false alarm, defined as the percent ratio of false 
positives (FPs), or cases wrongly identified by the 
algorithm as exceptions or interesting, to the sum 
of FPs and true negatives (TNs), where cases are 
correctly identified as not being exceptions or 
interesting. Sensitivity is the percent ratio of true 
positives (TPs), or cases correctly identified as 
interesting or exceptions, to the sum of TPs and 
false negatives (FNs), where cases are erroneously 
labeled as not interesting or not exceptions. The 
ideal plot on this graph is the upper left corner, 
which indicates 100 percent sensitivity (no FNs) 
and zero percent susceptibility (no FPs). However, 

in practical application, this is not always possible, 
and some compromise must be made. 

Auditors do not usually have much input in 
algorithm design unless they have designed it 
themselves. However, their input is valuable 
because when an algorithm is designed or 
evaluated, the data and processing for each of its 
potential uses must be considered. For example, a 
sophisticated system may measure customer 
satisfaction and find that all faulty equipment was 
replaced within one day, but this may not be the 
whole story. The problem may be caused by an 
auxiliary unit, such as a power source, that is 
incompatible with upgraded equipment. Failure to 
identify the root cause might mean that the 
enterprise is replacing perfectly operational and 
expensive equipment instead of the much cheaper 
power source. Algorithms can mimic human 
thinking but only if they are designed to do so. 

Figure 1—Plotting Sensitivity vs. Susceptibility for Different Algorithms
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Interpretation of the Results Is a  
Human Task 
Algorithms can return incorrect results, either 
because of flaws in the algorithm itself (logic) or 
implementation (coding) errors. 

Algorithmic (logic) errors typically result from a 
condition that arises during the execution that was 
not considered in the algorithmic design. For 
example, interpolation schemes (AI algorithms such 
as neural networks may be thought of as an 
interpolation scheme3) typically work well in the 
range for which data were provided (training data in 
the jargon of ML); however, they can easily go 
haywire if data outside of that range are 
encountered. Some logic errors, such as division by 
zero, will cause program failure—especially if 
testing is not thorough enough to consider them—
but some will not. Complex algorithms make testing 
even more difficult and can lead to more errors, 
which are often exploited to hack systems. 

Coding errors refer to cases where the algorithm is 
correct, but a coding error such as a simple typo 
has occurred. Logic or coding errors may be 
triggered by an event that is rare enough to have 
gone undetected during testing. This is why the 
response by the algorithm should ideally be 
accompanied by the exact raw data that it is based 
on and an explanation. For some algorithms, no 
explanation is needed. For example, a sorting 
algorithm’s explanation is the data sorted as 
requested. Some algorithms can be programmed to 
provide the reasoning for their conclusion; however, 
for others, such as neural networks, it can be 
difficult to explain the results in terms that are 
easily understood by the average person. 

However, assuming that neither logic nor coding 
errors have crept in, results must ultimately be 
interpreted by humans. The computer crunches 
numbers and returns an answer to the 
mathematical translation of the problem that was 
asked. How this relates to the actual problem may 
not be straightforward and depends on how well the 
solution to the mathematical problem answers the 
actual problem. For example, when checking 
reported shop income vs. the sum of the prices of 

the goods sold, it is possible to answer conclusively 
if there is a discrepancy. However, in comparing key 
performance indicators (KPIs), it is important to be 
careful about drawing conclusions that are not 
supported by the KPIs. As indicators, KPIs do not 
conclusively prove that there is or is not an issue. 
Nor do they always give insight on what is actually 
happening. Designing the right algorithm to prove 
something requires not just mathematical skills, but 
also a thorough understanding of the actual 
problem and what it will take to validate it or not. 
There is no shortage of readily accessible data, but 
if the proper steps are not taken to ensure that all 
necessary data are available, then key pieces of 
information will not be stored anywhere. 

Auditors must make sure that testing is designed to 
answer the question of whether a tool being used is 
able to answer the question that the auditor is 
asking. Enterprises typically have many tools of 
varying sophistication, but these are normally 
designed to answer operational questions, which 
may not be the questions auditors need to answer. 
For example, alarms indicating a potential problem, 
such as unusually heavy traffic, possible equipment 
malfunctions, low battery or adverse environmental 
conditions such as temperature or humidity, may be 
raised, but these may not be kept once resolved. To 
the auditor, trends or patterns in such alarms may 
be interesting, but in everyday operations there may 
not be time to solve anything but the immediate 
problem. When enterprises buy or build a new 
system, auditors should make sure it includes 
export capabilities. Using a new system may 
interfere with normal operations; therefore, it is 
ideal for auditors to have the option of obtaining the 
system’s raw data and using the appropriate 
algorithm to answer the audit questions. 

“ AUDITORS MUST MAKE SURE THAT TESTING 
IS DESIGNED TO ANSWER THE QUESTION OF 
WHETHER A TOOL BEING USED IS ABLE TO 
ANSWER THE QUESTION THAT THE AUDITOR  
IS ASKING. ”
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Understanding statistical significance is also 
important. For instance, a recommendation engine, 
a program that makes suggestions based on user 
data and preferences of similar users, makes an 
implicit assumption that it believes the user to be 
similar to some group. Even if this similarity is 
correct, a small sample in some such groups can 
easily result in poor statistics. In the car example, if 
the algorithm was trained with a set where few cars 
had accidents and those that did were 
predominantly of a certain color, an algorithm could 
associate a propensity to accidents for this color of 
car. In many cases, users only care about a definite 
answer from the algorithm and, as a result, 
algorithm designers may hide or fail to produce 
information that adds error bars (i.e., the results are 
believed to be accurate to 10 percent) or 
reservations to an answer if most users will discard 
such information anyway. 

Support for the actual conclusions cannot be 
arbitrary, but rather must be based on information. 
Failure to understand the results, with all their 
assumptions and caveats, can be extremely 
problematic—especially if the need for proof is 
substituted by computer output. A well-known 
example is the use of a facial recognition algorithm 
on blurred pictures that wrongly identified 
suspects.4 In these cases, an algorithm performed 
worse when the picture contrast was not as sharp, 
and the error was exacerbated by the police blindly 
acting on those suggestions. The best use of the 
algorithm in these cases would have been to take 
the suggestion of possible suspects and start an 
investigation, instead of directly accusing people. 
The same applies to audit. It is one thing to use a 
correlation to find indicators of possible fraud, but it 
is completely different to accuse people of fraud 
based on some correlations discovered by an 
algorithm. Regardless of what data were used, 
indicators are not proof, and justifying beliefs based 
on an algorithm is extremely dangerous. 

Algorithmic bias has generated complaints.5 In one 
case, protests forced the UK government to 
abandon an algorithm that was used to determine 
university admittance based on a student’s 
intraschool ranking and historical school 
performance. Protesters argued that poorer 

students were discriminated against, and they had a 
valid point. The problem was that the algorithm was 
not designed to solve the actual problem. Ranking 
individual students made no more sense than 
assuming that bad teams cannot become good or 
that the best player on a bad team is worse than the 
best player on a good team.  The protesters took 
aim at the algorithm; however, the error actually 
came from the person who decided to use the 
wrong algorithm. 

The term algorithmic bias means that smart 
algorithms may use statistical data to discriminate 
against some people. One example is an enterprise’s 
recommendation engine for evaluating applicants, 
which was reported to discriminate against women.6 

It appears that the algorithm was using past 
successful and unsuccessful resumes to pick out 
desirable features in a candidate, and gender or 
gender-correlated information was one such piece of 
information, not unlike the children’s hospital 
example. Even ignoring issues of statistical 
significance in a field where there may be too many 
applicants of one gender and too few of another, the 
key point is that if the exact, desirable qualities in a 
candidate are not considered, no smart algorithm can 
determine those qualities for an employer. Refusing 
to take responsibility for a decision and delegating it 
to a program or algorithm is an admission by the 
employment recruiter that the job of the recruiter 
could be replaced by a machine. 

As theoretical physicist Eugene Wigner remarked, 
“It is nice to know that the computer understands 
the problem. But I would like to understand it, too.”7 
Ultimately, everything is measured by success or 
failure. If the algorithms result in recommendations 
that are better and cheaper than human 
performance, then there will be strong pressure to 

“ WHETHER THEY THINK OF 
IT IN THESE TERMS OR NOT, 
AUDITORS ARE NO 
STRANGERS TO DEVISING 
ALGORITHMS. ”
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substitute human decisions with machine 
decisions. On the other hand, algorithms have no 
legal capacity and cannot be sued if their results are 
detrimental to anyone. This is a common debate 
and it will likely result in a compromise that 
algorithms must explain their decisions, and there 
have already been steps to this effect.8, 9 

Effects on the Auditor 
Algorithms are relevant to auditors in two ways. 
First, auditors typically have a task (audit), which 
requires them to investigate and answer a problem 
such as whether or not a particular control or 
system of controls is working. To solve the problem, 
they need to devise an algorithm, or audit plan, that 
also describes how they will tackle the problem. 
Whether the audit plan is written or not and whether 
they use third-party software or write the software 
themselves, the auditors are using an algorithm. 
Whether they think of it in these terms or not, auditors 
are no strangers to devising algorithms. They should 
at least understand, in nontechnical terms, the 
questions that must be answered to reach a 
conclusion. If they cannot manage the technical 
aspects, they can seek technical help, but knowing 
what must be compared is the auditor’s job. 

The use of algorithms, particularly ML algorithms, 
to make decisions exposes enterprises to risk. 
Although management will ultimately make the 
decision on the risk it is willing to accept, it is the 
auditor’s job to objectively inform management of 
the risk. Common areas of risk include: 

Errors in algorithms or their implementation and •
cases that may come up in practice that the 
algorithm has not considered. This may be 
diagnosed either via an analysis of the algorithm 
or through testing. Programs are often 
proprietary, and documentation, if available at all, 
is typically not detailed enough to understand 
exactly what the algorithm is doing. Even if it is, it 
may be complex and hard to understand for a 
nonexpert. User acceptance testing (UAT) is 
typically designed by users and focuses on 
demonstrating that the usual cases work. Rare 
cases are usually not considered, but these are 
most interesting to the auditor. The focus for 

users and auditors is different yet 
complementary; users focus on doing their 
everyday work well and efficiently, while the 
auditor is interested in what can go wrong. 

Correctness and adequacy of data fed to •
algorithms, particularly ML algorithms, to train 
them. Such data should be able to cover both 
usual and unusual cases. Auditors are concerned 
about poor training in some rare cases, resulting 
in the algorithms producing incorrect results. 

The tendency to trust the machine answer is •
strong but only justified if the correctness has 
been exhaustively tested and the machine 
actually answers the appropriate questions. 

Conclusion 
Auditors are the experts on algorithms used to 
solve audit problems, even if the technical aspects 
of the algorithm design need to be delegated to 
specialists. The ownership and responsibility for 
answering audit questions rests with auditors. 

Early influence by auditors when systems are built 
or procured will anticipate potential needs with 
regard to the data and the ability of the algorithm to 
handle the data range of interest to the auditor and 
to answer the questions of interest in the audit. 

When using the results of a software tool, auditors 
should ensure that the results provide a reasonable 
answer to the actual question asked by the audit 
and understand the assumptions and caveats that 
are a part of the algorithm design. 

Auditors should also be aware of potential biases in 
the logic or data, understand how they may affect 
the results and understand what may be done to 
mitigate those biases. It is important to control the 

  “ HUMAN NOTIONS SUCH AS FAIRNESS MUST 
BE PRECISELY DEFINED AND BUILT INTO THE 
ALGORITHM SINCE THEY ARE NOT SOMETHING 
THAT THE ALGORITHM CAN LEARN BY ITSELF. ”
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behavior of the algorithm. Human notions such as 
fairness must be precisely defined and built into the 
algorithm since they are not something that the 
algorithm can learn by itself. 
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