
ISACA JOURNAL VOL 6 1© 2021 ISACA. All rights reserved. www.isaca.org

Recent advances in machine learning (ML) and
artificial intelligence (AI) have raised new
awareness and concerns of algorithms, including
their uses and misuses and their potential and
limitations. It is important for practitioners,
specifically auditors, to understand what algorithms
are and why they matter, that smart algorithms are
not new, and the decisive role humans have in
algorithm design and metrics. It is the auditor’s job
to ask questions using the correct tools, interpret
results and remember that errors are possible even
with the most advanced algorithms.

Algorithms Are and Have Always Been
Everywhere
The term “algorithm” is typically associated with
mathematicians and computer scientists and is,
therefore, often considered too specialized and
advanced for the layman to understand. However, in
essence, an algorithm is a recipe—one way of solving
a specific problem that anyone could understand, for
instance, when babies solve their needs for
nourishment, pain management or attention by
crying. An algorithm can be as simple as “If hungry,
then cry.” Similarly, algorithms are used for solving
every type of activity from cooking to driving to
troubleshooting or to diagnosing a medical condition.
Whether it is thought of it this way or not, every time
humans solve a problem, no matter how simple or
complex it appears to be, they are using an algorithm.
This algorithm may have been invented by others and
passed along or developed out of need.

An algorithm does not have to be complex. All
algorithms are not equal—there are better and
worse ways of solving a problem, and there may be
trade-offs for each variation. For example,
programming the solution of a second-order
algebraic equation using the discriminant formula is
not a good way to solve the problem with a
computer.1 Similarly, if a program’s workspace fits
in memory, it is typically significantly more efficient
to avoid the use of a database altogether. This is
not practical or possible if a large amount of data

needs to be used. The point is that what may be
fast and easy with one algorithm may be
prohibitively slow or even impossible with another.

The feasibility of potentially game-changing
technological advances is critically dependent on
finding an efficient algorithm that makes
computations fast. An example is homomorphic
encryption, which enables the manipulation of
encrypted data without the need to convert them to
cleartext first.2 However, this greatly complicates
the operations that must be performed.

The same concept applies to audits. Like any
activity, audits involve tasks such as checking “as
is” vs. the “as should be” situations or finding
correlations, which may be broken into smaller
subtasks. Checking the “as is” vs. the “as should be”
situations imply an algorithm to:

Obtain the “as is” and “as should be” versions •
Perform whatever operations are needed to •
enable a comparison

Algorithms and the Auditor

Spiros Alexiou, Ph.D., CISA, CSX-F, CIA
Has been an IT auditor for the last 13 years. He has more than 25 years of
experience in IT systems, has written a number of sophisticated computer
programs and algorithms, and has taught university courses on algorithms.
He can be reached at spiralexiou@gmail.com.

FEATURE

ISACA JOURNAL VOL 62 © 2021 ISACA. All rights reserved. www.isaca.org

Perform the comparison •
Assess the results and their significance •

A complete algorithm involves a detailed
prescription of all of the general tasks and how to
perform each of the subtasks. All the complexity
and sophistication should not obscure the fact that
an algorithm is just a recipe, or simply one way to
tackle a problem, even if it is sophisticated or
intelligent. Highly sophisticated and intelligent
algorithms that can recognize and change their way
of solving problems have existed for many years.
For instance, adaptive solvers of differential
equations can adjust their time step or method of
attack using explicit or implicit methods depending
on the problem.

Algorithm Design and Metrics: Humans
Are Important
A computer and the algorithms it employs to solve
problems are merely following programmed
prescriptions. This is also true for intelligent
algorithms that can learn. Even highly advanced
programs able to solve problems for which
intelligence is needed are following prescriptions,
probably with an elaborate feedback mechanism. In
fact, the more intelligent the algorithm, the more
specialized it typically is. However, both the input
data and the relevant features the algorithm
considers are determined by the user and
programmer, and this must be taken into account
when interpreting the output.

For instance, if a computer is given information on
existing cars, their characteristics and their history
and is asked to find correlations between
characteristics and accidents, the characteristics
chosen to be processed by the algorithm are
crucial. If maximum speed, brake quality and other
factors are not included in the characteristics
processed, then the results may include spurious

correlations. For example, the results may find a
correlation between car color and traffic accident
propensity where one does not actually affect the
other. Similarly, if an auditor analyzes thefts in a
branch or across branches but fails to record the
monetary values of the items involved, then the
analysis is likely to miss very important information
and conclusions may be flawed.

Domain expertise is vitally important in designing
algorithms. Someone tasked with designing a
solution should at least be able to formulate the
problem and outline the key characteristics of its
solution, no matter how complicated the details
may be. A number of algorithms, such as decision
trees, can easily overfit and find spurious
correlations without some type of guidance. This
guidance can range from defining acceptable
tolerances to including or excluding pieces of
information, such as car color. This raises the issue
of possible bias (i.e., ignoring or weighing
potentially less important factors that do not fit the
auditor’s experience, presumptions or prejudices).
In the previous example, why should the auditor
consider the monetary value of items stolen and not
their color? It is possible that the thief may choose
to steal items of a certain color. The fact that a
domain expert would choose the monetary value as
a relevant characteristic but not the color of the
stolen items or the manufacturer is an example of
bias, as relevant characteristics are the projections
of the auditor’s experience, reasoning and beliefs.
This is unavoidable and is also the case in many
industries. For example, when studying cause and
effect, only a limited number of possible causes are
considered. Even the most convincing scientific
experiments need an underlying theory to test
(i.e., effect X depends on parameters A, B and C). In
another example, when letting an object drop to test
gravity, most people theorize about the force, speed
and acceleration. That is, there must first be a
hypothesis regarding the force and not whether the
day is sunny or cloudy, for example, that
determines the fall of the object. No experiment can
handle an infinite number of possible causes.
Similarly, in devising an elaborate algorithm to
check for correlations and, ultimately, solve a
problem, there can be a wide range of factors
(e.g., monetary value, manufacturer, color). No
algorithm can handle an infinite number of
variables, which, in principle, may be related in a
causal way to the end effect.

“ A COMPLETE ALGORITHM
INVOLVES A DETAILED
PRESCRIPTION OF ALL OF
THE GENERAL TASKS AND
HOW TO PERFORM EACH OF
THE SUBTASKS. ”

ISACA JOURNAL VOL 6 3© 2021 ISACA. All rights reserved. www.isaca.org

Particularly in ML, algorithms must be trained, and
the training is what determines the algorithm’s
performance. This training can be compared to
teaching a child. If a child has been trained in one
area, for instance farming, the child will typically
perform well in tasks related to farming and not as
well in unfamiliar subjects. If there is bias in training
(i.e., unimportant factors feature heavily and
important factors are not featured all), especially
with relatively small training sets, those trained
algorithms will have a built-in bias. For example, a
child who has never been exposed to a dangerous
animal has only the notion of friendly animals.
Similarly, if an algorithm is shown a number of
hospitals and their costs for medical supplies and
both the majority of the hospitals and hospitals with
excessive costs are children’s hospitals, then the
algorithm may conclude that there may be a
connection between children and excessive
supplies. In other words, if an algorithm is to learn
(from data), there is no such thing as bias-free
learning. The best expectation is a pluralistic
algorithm that allows multiple data sources.

The bias in algorithms has no relation to the much
more biased versions of history of different countries
as discovered in past or present conflicts. There is a
very good reason for this—algorithm designers are
typically interested in covering as large a range of
cases as possible, so that even if a rare case is
encountered, the algorithm handles it well. When
people talk about algorithmic bias, they typically
mean bias in the data fed to the algorithm, using the
incorrect algorithm to solve a problem or using an
algorithm on a data set where it performs poorly.

Because a certain amount of bias in data is
unavoidable, it is important to check for it. Just as
scientists try to push theories to their limits to test
them and then revise if necessary, human
assumptions should also be tested, especially if a
positive result has been produced. For example, in the
car color case, a researcher can discover if different
age groups with the same car color have similar
accident rates. If not, then the car color is not the

deciding factor. Similarly, in the hospital example, one
might check the average cost for all children’s
hospitals and the average cost for general hospitals.

Another important issue is the necessary data.
Algorithms operate on data. To prove or disprove a
hypothesis such as a cost-benefit analysis or
determine whether there is fraud in reporting, an
algorithm needs data—not just any data, but the
data that are necessary for answering the specific
problem. Algorithms do not create this data—it is
the job of humans to make sure that the algorithm
has all the necessary information and data to solve
the problem. Poor planning may lead to using
whatever data are available to answer a problem for
which the available data are inadequate or
irrelevant. Even if the exact problem has not yet
surfaced, planning to have the kind of data needed
to answer classes of problems is essential.

Humans judge the relative successes or failures of
algorithms. In many cases, one algorithm is not
necessarily better than another, but it may be more
robust or more suitable for a particular situation. A
well-known example in numerical analysis is the use
of implicit solvers (only) for stiff problems (i.e.,
improve the stability and, therefore, ensure
correctness of the solution by solving a system of
equations with a much larger time step).

For instance, matching algorithms can return false
positives or false negatives. Typically, this is a
product of fine-tuning the algorithm’s parameters,
such as acceptable error tolerances. The definition
of acceptable depends on the application. If the
cost of investigating false positives outweighs the
benefit, then it might make sense to accept more
false negatives if that means having significantly
fewer false positives.

In functions such as fraud detection, using a
watchdog algorithm to identify fraud cases, it is not
desirable to be alerted for every encounter. The
algorithm is instead set to tolerate some fraud (if
the cost of investigating outweighs the potential
loss) and concentrate on the more important cases.
The same algorithm that performs well in this
situation may be unsuitable in a situation with many
positives. In a situation with a handful of true cases
per day, an algorithm that effectively introduces as
many false negatives is still acceptable since the
cases to be investigated are manageable. On the

“ IF AN ALGORITHM IS TO
LEARN (FROM DATA), THERE
IS NO SUCH THING AS
BIAS-FREE LEARNING. ”

Enjoying
this article?

 • Read Auditing

Artificial
Intelligence.
www.isaca.org/
auditing-AI

 • Learn more
about, discuss
and collaborate
on audit and
assurance in
ISACA’s Online
Forums.
https://engage.
isaca.org/
onlineforums

ISACA JOURNAL VOL 64 © 2021 ISACA. All rights reserved. www.isaca.org

other hand, hundreds of daily cases introducing as
many or more false negatives may mean having to
double staff to investigate the false positives.

Figure 1 illustrates the concept by comparing
susceptibility and sensitivity in four different
algorithms. Susceptibility is the tendency to raise a
false alarm, defined as the percent ratio of false
positives (FPs), or cases wrongly identified by the
algorithm as exceptions or interesting, to the sum
of FPs and true negatives (TNs), where cases are
correctly identified as not being exceptions or
interesting. Sensitivity is the percent ratio of true
positives (TPs), or cases correctly identified as
interesting or exceptions, to the sum of TPs and
false negatives (FNs), where cases are erroneously
labeled as not interesting or not exceptions. The
ideal plot on this graph is the upper left corner,
which indicates 100 percent sensitivity (no FNs)
and zero percent susceptibility (no FPs). However,

in practical application, this is not always possible,
and some compromise must be made.

Auditors do not usually have much input in
algorithm design unless they have designed it
themselves. However, their input is valuable
because when an algorithm is designed or
evaluated, the data and processing for each of its
potential uses must be considered. For example, a
sophisticated system may measure customer
satisfaction and find that all faulty equipment was
replaced within one day, but this may not be the
whole story. The problem may be caused by an
auxiliary unit, such as a power source, that is
incompatible with upgraded equipment. Failure to
identify the root cause might mean that the
enterprise is replacing perfectly operational and
expensive equipment instead of the much cheaper
power source. Algorithms can mimic human
thinking but only if they are designed to do so.

Figure 1—Plotting Sensitivity vs. Susceptibility for Different Algorithms

%
Se

ns
iti

vit
y (

TP
/[T

P+
FN

])

% Susceptibility (FP/[FP+TN])

100

80

60

40

20

0
0 20 40 60 80 100

ISACA JOURNAL VOL 6 5© 2021 ISACA. All rights reserved. www.isaca.org

Interpretation of the Results Is a
Human Task
Algorithms can return incorrect results, either
because of flaws in the algorithm itself (logic) or
implementation (coding) errors.

Algorithmic (logic) errors typically result from a
condition that arises during the execution that was
not considered in the algorithmic design. For
example, interpolation schemes (AI algorithms such
as neural networks may be thought of as an
interpolation scheme3) typically work well in the
range for which data were provided (training data in
the jargon of ML); however, they can easily go
haywire if data outside of that range are
encountered. Some logic errors, such as division by
zero, will cause program failure—especially if
testing is not thorough enough to consider them—
but some will not. Complex algorithms make testing
even more difficult and can lead to more errors,
which are often exploited to hack systems.

Coding errors refer to cases where the algorithm is
correct, but a coding error such as a simple typo
has occurred. Logic or coding errors may be
triggered by an event that is rare enough to have
gone undetected during testing. This is why the
response by the algorithm should ideally be
accompanied by the exact raw data that it is based
on and an explanation. For some algorithms, no
explanation is needed. For example, a sorting
algorithm’s explanation is the data sorted as
requested. Some algorithms can be programmed to
provide the reasoning for their conclusion; however,
for others, such as neural networks, it can be
difficult to explain the results in terms that are
easily understood by the average person.

However, assuming that neither logic nor coding
errors have crept in, results must ultimately be
interpreted by humans. The computer crunches
numbers and returns an answer to the
mathematical translation of the problem that was
asked. How this relates to the actual problem may
not be straightforward and depends on how well the
solution to the mathematical problem answers the
actual problem. For example, when checking
reported shop income vs. the sum of the prices of

the goods sold, it is possible to answer conclusively
if there is a discrepancy. However, in comparing key
performance indicators (KPIs), it is important to be
careful about drawing conclusions that are not
supported by the KPIs. As indicators, KPIs do not
conclusively prove that there is or is not an issue.
Nor do they always give insight on what is actually
happening. Designing the right algorithm to prove
something requires not just mathematical skills, but
also a thorough understanding of the actual
problem and what it will take to validate it or not.
There is no shortage of readily accessible data, but
if the proper steps are not taken to ensure that all
necessary data are available, then key pieces of
information will not be stored anywhere.

Auditors must make sure that testing is designed to
answer the question of whether a tool being used is
able to answer the question that the auditor is
asking. Enterprises typically have many tools of
varying sophistication, but these are normally
designed to answer operational questions, which
may not be the questions auditors need to answer.
For example, alarms indicating a potential problem,
such as unusually heavy traffic, possible equipment
malfunctions, low battery or adverse environmental
conditions such as temperature or humidity, may be
raised, but these may not be kept once resolved. To
the auditor, trends or patterns in such alarms may
be interesting, but in everyday operations there may
not be time to solve anything but the immediate
problem. When enterprises buy or build a new
system, auditors should make sure it includes
export capabilities. Using a new system may
interfere with normal operations; therefore, it is
ideal for auditors to have the option of obtaining the
system’s raw data and using the appropriate
algorithm to answer the audit questions.

“ AUDITORS MUST MAKE SURE THAT TESTING
IS DESIGNED TO ANSWER THE QUESTION OF
WHETHER A TOOL BEING USED IS ABLE TO
ANSWER THE QUESTION THAT THE AUDITOR
IS ASKING. ”

ISACA JOURNAL VOL 66 © 2021 ISACA. All rights reserved. www.isaca.org

Understanding statistical significance is also
important. For instance, a recommendation engine,
a program that makes suggestions based on user
data and preferences of similar users, makes an
implicit assumption that it believes the user to be
similar to some group. Even if this similarity is
correct, a small sample in some such groups can
easily result in poor statistics. In the car example, if
the algorithm was trained with a set where few cars
had accidents and those that did were
predominantly of a certain color, an algorithm could
associate a propensity to accidents for this color of
car. In many cases, users only care about a definite
answer from the algorithm and, as a result,
algorithm designers may hide or fail to produce
information that adds error bars (i.e., the results are
believed to be accurate to 10 percent) or
reservations to an answer if most users will discard
such information anyway.

Support for the actual conclusions cannot be
arbitrary, but rather must be based on information.
Failure to understand the results, with all their
assumptions and caveats, can be extremely
problematic—especially if the need for proof is
substituted by computer output. A well-known
example is the use of a facial recognition algorithm
on blurred pictures that wrongly identified
suspects.4 In these cases, an algorithm performed
worse when the picture contrast was not as sharp,
and the error was exacerbated by the police blindly
acting on those suggestions. The best use of the
algorithm in these cases would have been to take
the suggestion of possible suspects and start an
investigation, instead of directly accusing people.
The same applies to audit. It is one thing to use a
correlation to find indicators of possible fraud, but it
is completely different to accuse people of fraud
based on some correlations discovered by an
algorithm. Regardless of what data were used,
indicators are not proof, and justifying beliefs based
on an algorithm is extremely dangerous.

Algorithmic bias has generated complaints.5 In one
case, protests forced the UK government to
abandon an algorithm that was used to determine
university admittance based on a student’s
intraschool ranking and historical school
performance. Protesters argued that poorer

students were discriminated against, and they had a
valid point. The problem was that the algorithm was
not designed to solve the actual problem. Ranking
individual students made no more sense than
assuming that bad teams cannot become good or
that the best player on a bad team is worse than the
best player on a good team. The protesters took
aim at the algorithm; however, the error actually
came from the person who decided to use the
wrong algorithm.

The term algorithmic bias means that smart
algorithms may use statistical data to discriminate
against some people. One example is an enterprise’s
recommendation engine for evaluating applicants,
which was reported to discriminate against women.6

It appears that the algorithm was using past
successful and unsuccessful resumes to pick out
desirable features in a candidate, and gender or
gender-correlated information was one such piece of
information, not unlike the children’s hospital
example. Even ignoring issues of statistical
significance in a field where there may be too many
applicants of one gender and too few of another, the
key point is that if the exact, desirable qualities in a
candidate are not considered, no smart algorithm can
determine those qualities for an employer. Refusing
to take responsibility for a decision and delegating it
to a program or algorithm is an admission by the
employment recruiter that the job of the recruiter
could be replaced by a machine.

As theoretical physicist Eugene Wigner remarked,
“It is nice to know that the computer understands
the problem. But I would like to understand it, too.”7
Ultimately, everything is measured by success or
failure. If the algorithms result in recommendations
that are better and cheaper than human
performance, then there will be strong pressure to

“ WHETHER THEY THINK OF
IT IN THESE TERMS OR NOT,
AUDITORS ARE NO
STRANGERS TO DEVISING
ALGORITHMS. ”

ISACA JOURNAL VOL 6 7© 2021 ISACA. All rights reserved. www.isaca.org

substitute human decisions with machine
decisions. On the other hand, algorithms have no
legal capacity and cannot be sued if their results are
detrimental to anyone. This is a common debate
and it will likely result in a compromise that
algorithms must explain their decisions, and there
have already been steps to this effect.8, 9

Effects on the Auditor
Algorithms are relevant to auditors in two ways.
First, auditors typically have a task (audit), which
requires them to investigate and answer a problem
such as whether or not a particular control or
system of controls is working. To solve the problem,
they need to devise an algorithm, or audit plan, that
also describes how they will tackle the problem.
Whether the audit plan is written or not and whether
they use third-party software or write the software
themselves, the auditors are using an algorithm.
Whether they think of it in these terms or not, auditors
are no strangers to devising algorithms. They should
at least understand, in nontechnical terms, the
questions that must be answered to reach a
conclusion. If they cannot manage the technical
aspects, they can seek technical help, but knowing
what must be compared is the auditor’s job.

The use of algorithms, particularly ML algorithms,
to make decisions exposes enterprises to risk.
Although management will ultimately make the
decision on the risk it is willing to accept, it is the
auditor’s job to objectively inform management of
the risk. Common areas of risk include:

Errors in algorithms or their implementation and •
cases that may come up in practice that the
algorithm has not considered. This may be
diagnosed either via an analysis of the algorithm
or through testing. Programs are often
proprietary, and documentation, if available at all,
is typically not detailed enough to understand
exactly what the algorithm is doing. Even if it is, it
may be complex and hard to understand for a
nonexpert. User acceptance testing (UAT) is
typically designed by users and focuses on
demonstrating that the usual cases work. Rare
cases are usually not considered, but these are
most interesting to the auditor. The focus for

users and auditors is different yet
complementary; users focus on doing their
everyday work well and efficiently, while the
auditor is interested in what can go wrong.

Correctness and adequacy of data fed to •
algorithms, particularly ML algorithms, to train
them. Such data should be able to cover both
usual and unusual cases. Auditors are concerned
about poor training in some rare cases, resulting
in the algorithms producing incorrect results.

The tendency to trust the machine answer is •
strong but only justified if the correctness has
been exhaustively tested and the machine
actually answers the appropriate questions.

Conclusion
Auditors are the experts on algorithms used to
solve audit problems, even if the technical aspects
of the algorithm design need to be delegated to
specialists. The ownership and responsibility for
answering audit questions rests with auditors.

Early influence by auditors when systems are built
or procured will anticipate potential needs with
regard to the data and the ability of the algorithm to
handle the data range of interest to the auditor and
to answer the questions of interest in the audit.

When using the results of a software tool, auditors
should ensure that the results provide a reasonable
answer to the actual question asked by the audit
and understand the assumptions and caveats that
are a part of the algorithm design.

Auditors should also be aware of potential biases in
the logic or data, understand how they may affect
the results and understand what may be done to
mitigate those biases. It is important to control the

 “ HUMAN NOTIONS SUCH AS FAIRNESS MUST
BE PRECISELY DEFINED AND BUILT INTO THE
ALGORITHM SINCE THEY ARE NOT SOMETHING
THAT THE ALGORITHM CAN LEARN BY ITSELF. ”

ISACA JOURNAL VOL 68 © 2021 ISACA. All rights reserved. www.isaca.org

behavior of the algorithm. Human notions such as
fairness must be precisely defined and built into the
algorithm since they are not something that the
algorithm can learn by itself.

Endnotes
Teukolsky, S; W. Vetterling; B. Flannery; 1
Numerical Recipes: The Art of Scientific
Computing, Cambridge University Press,
United Kingdom, 2007
Armknecht, F.; C. Boyd; C. Carr; K. Gjøsteen; 2
A. Jaschke; C. A. Reuter; M. Strand; A Guide to
Fully Homomorphic Encryption, 2015,
https://eprint.iacr.org/2015/1192.pdf
Alexiou, S.; “Advanced Data Analytics for IT 3
Auditors,” ISACA® Journal, vol. 6, 2016,
https://www.isaca.org/archives
Hill, K.; “Wrongfully Accused by an Algorithm,” 4
The New York Times, 24 June 2020,
https://www.nytimes.com/2020/06/24/
technology/facial-recognition-arrest.html
Porter, J.; “UK Ditches Exam Results Generated 5
By Biased Algorithm After Student Protests,”
The Verge, 17 August 2020,
https://www.theverge.com/2020/8/17/21372045/
uk-a-level-results-algorithm-biased-coronavirus-
covid-19-pandemic-university-applications

Dastin, J.; “Amazon Scraps Secret AI Recruiting 6
Tool That Showed Bias Against Women,” Reuters,
10 October 2018, https://www.reuters.com/
article/us-amazon-com-jobs-automation-insight/
amazon-scraps-secret-ai-recruiting-tool-that-
showed-bias-against-women-idUSKCN1MK08G
“Can Biological Phenomena Be Understood By 7
Humans?” Nature, vol. 403, iss. 345,
27 January 2000
Smith, A.; “Using Artificial Intelligence and 8
Algorithms,” US Federal Trade Commission,
8 April 2020, https://www.ftc.gov/news-
events/blogs/business-blog/2020/04/
using-artificial-intelligence-algorithms
Sartor, G.; F. Lagioia; The Impact of the General 9
Data Protection Regulation (GDPR) on Artificial
Intelligence, European Parliamentary Research
Service (EPRS), Belgium, June 2020,
https://www.europarl.europa.eu/RegData/
etudes/STUD/2020/641530/EPRS_STU(2020)
641530_EN.pdf

