
ISACA JOURNAL VOL 6 1

The IT industry is changing at a rapid pace, and
gone are the days when administrators managed
just a handful of servers. In today’s rapid
deployments, system administrators are required to
handle tens of hundreds of servers that are spun up
or destroyed, as demand dictates. The industry is
increasingly dealing with this trend with a handful of
technologies that automate many tasks that were
done by hand in the past, including the creation of
virtual machines, containers, configuration of
operating systems, networking parameters, audit
setting, and installation of applications or features.
Tools such as Chef, Ansible and Puppet manage the
configuration of servers, and others such as
Kubernetes and Docker can be used to perform
lightweight virtualization and application isolation,
while Amazon Web Services (AWS) and Microsoft
Azure cloud services give rise to fast and massive
infrastructure with little capital expenditure for
applications.

Linux and UNIX have long been prime examples of
systems that supported these orchestration and
automatization tools, given that most of their
configuration was already performed either through
small shell-based scripts or configuration files. But,
a few years ago, even Microsoft saw the writing on
the wall and began pushing technologies such as
PowerShell and Desired State Configuration (DSC)
to fill the gap.

Some auditors still rely on old and outdated scripts
to harvest information and tables that have to be
analyzed one by one in search of issues when they
should perhaps be embracing those same
orchestration and automation tools to help save
time analyzing systems.

Enter PowerShell
PowerShell is a shell programming language and an
automation tool. It is now on version 6.0 and has
been open-sourced.1 It also has versions for most
major operating systems such as Linux, Windows
and macOS and has gained many modules to
administer other Microsoft technologies such as
Active Directory, Structured Query Language (SQL)
Servers, SharePoint and Skype for Business, to
name a few.

Even as a shell, PowerShell is a bit odd for those
familiar with KornShell (ksh) or Bash instead of this
object-based language. If one is not a programmer
outside of being an auditor, these terms may be
unfamiliar, but they are not very difficult to
understand.

Explaining PowerShell is easier through examples.
Figure 1 is an example that shows how to create a
variable that contains some text.

Variables or “objects” in which one can store things
for later use start with a $ sign and, in this case, the
variable is called a and has some text in it. Objects
are just things that have abilities (methods) and
properties. Objects are of a certain type that define
their properties and methods. A real-life example of

The Age of PowerShell

Ignacio Marambio Catán, CISA, CRISC, CEH, CISSP, Security+
Has been an IT consultant for half of his professional career, after which
he performed security operations, where the main objective was
compliance. He also held audit-related positions with a focus on risk
measurements. It was during his time performing security operations that
he became a believer in automation, which later was used while auditing
systems. Lately, Catán has been reading about machine learning and
completed a Microsoft Professional Program in Data Science. In 2016,
Catán was awarded the Certified Information Systems Auditor® (CISA®)
Geographic Excellence Award.

© 2018 ISACA. All rights reserved. www.isaca.org

FEATURE

© 2018 ISACA. All rights reserved. www.isaca.org ISACA JOURNAL VOL 6 2

an object would be a car; a property of the car
would be its color (e.g., yellow) and it would have a
method called “honk,” which would honk the horn.
For a PowerShell example, assume text is desired in
uppercase.

The ToUpper method shown in figure 2 exists
because the variable a is of a given type or class; in
this case, it is a string.

Creating variables is not the only thing that can be
done with PowerShell, of course. There is the usual
redirection with the > character and, as in UNIX,
there is the cat command. Length is also a property
of a string variable. For those who are not familiar
with UNIX, cat is used to output the contents of a
file to the screen. Also, the redirection operand is
used to redirect the output of a given command to a
file. An example can be seen in figure 3.

Figure 1—A First PowerShell Example

Figure 3—Unix-Like Operands

Figure 2—PowerShell Methods

© 2018 ISACA. All rights reserved. www.isaca.org ISACA JOURNAL VOL 6 3

PowerShell also has another great feature, the pipe
(see figure 4), which also works much as it does in
UNIX.

ls, as in UNIX, lists files where the pipeline, the |
character, passes objects one by one to the next
command, which, in this case, is called where, and it
is used to filter what is in the pipeline. What -match
does should be obvious here. There are also -eq, -ne,
-lt, -gt and many others2 in addition to mean, equal,
not equal, less than and greater than.

Objects can also be grouped in variables and there
is also a function to go through them one by one.

Figure 5 introduces the if control structure and
blocks of code using the curly braces. There is
much more to be discovered about structures, and
readers are encouraged to investigate further on

their own. Modules and extensions to the core
PowerShell commands to perform other advanced
operations such as managing databases, mail
servers and domain controllers can be installed
using install-module, as can be seen in figure 6.

In the case of the sqlservermodule, it includes
about 93 commands related to the database, which
can be used to create, modify or delete instances,
databases, database users, store procedures, and
change and show configurations.

In figure 7, here using Windows 2012 R2, the
example uses get-sqlinstance to get all the
instances running in the server, and later a pipeline
is used to get all the databases in all the instances.
This is a newly installed test server, so there is very
little here.

Figure 4—The Pipe

Figure 5—Control Flow

© 2018 ISACA. All rights reserved. www.isaca.org ISACA JOURNAL VOL 6 4

On to DSC
DSC is the configuration management feature of
PowerShell. Its main purpose is pushing settings to
a set of servers. It is like a more extreme version of
Group Policies, a Microsoft Windows technology
used to manage configuration parameters on
groups of servers and client computers that are part
of a network.

To use DSC, a DSC configuration has to be written,
and it relies on DSC resources. DSC configurations
are PowerShell scripts written in a declarative
language specifying how a given thing should be
configured. The specific thing is relying on a DSC

resource. Perhaps it is easier to again start with an
example (figure 8) and build from there.

This little script uses two resources that are part of
the PSDesiredStateConfigurationmodule. These are
the service and user resources. This is, of course, a
toy of an example that will ensure the Windows
Update service is running and the user
imarambiocatan exists. To use it, first compile it into
a Managed Object Format (MOF)3 file, which is
accomplished by running the example file. A test of
the configuration using the test-dscconfiguration
function is shown in figure 9.

Figure 6—Installing Modules

Figure 7—The SQL Server PowerShell Module

© 2018 ISACA. All rights reserved. www.isaca.org ISACA JOURNAL VOL 6 5

From the output, it can be deduced that the
imarambiocatan user does not exist in this server,
but the Windows Update service is actually running.
The exact same script can be used to fix the issues.
But to illustrate how DSC works, in figure 10, the
Windows update service is first stopped, and then
DSC is used to fix the configuration of the system.

There are many available DSC resources by
Microsoft and by others, and the things that can be
done using DSC are endless, things that are as
simple as starting a service or as complex as
configuring an application with a database and a
farm of distributed web servers. The DSC demo
presented only explores so much, but an

administrator can also configure servers to fetch
these MOF files from a centralized location,
configure themselves accordingly and report their
own status.4 The tools surrounding DSC are new
and evolving in such a way that users can stumble
into some issues with items such as the SQL Server
DSC5 resources and submit the relevant bug reports
along the way. Other tools such as DSC
Environment Analyzer (DSCEA)6 can be used to
generate Hypertext Markup Language (HTML)
reports that span many hundreds of servers with
very little help from the IT staff while also deploying
the DSC resources needed by the servers to
complete the tests.

Figure 8—A Simple DSC Example

configuration Example
{
 Import-DscResource -ModuleName PSDesiredStateConfiguration
 Node localhost
 {

 Service ServiceExample
 {
 Name = "wuauserv"
 StartupType = "Manual"
 State = "Running"
 }
 User imarambiocatan
 {
 Ensure = "Present"
 UserName = "imarambiocatan"
 }
 }
}
Example
'

Figure 9—Testing a Server With DSC

© 2018 ISACA. All rights reserved. www.isaca.org ISACA JOURNAL VOL 6 6

Auditors should be able to leverage these tools to
automate most of what today represents a sizeable
time commitment on some of the IT-related
engagements, and for once, sharing their scripts
might make the life of administrators a lot easier in
the future because they might be able to convert
them into tools to automate the configuration of
their own servers, resulting in a more secure
environment. Furthermore, as more and more
companies adopt development operations
(DevOps), i.e., the practice that unifies operations
and development to shorten the time between
releases, making them more predictable and
aligned to business objectives, automation will be
key to their success. It is by understanding the tools
that are being used for this automation that
auditors will be able to effectively ask the right
questions when it comes to auditing the processes
in which they are involved.

Endnotes
Snover, J.; “PowerShell Is Open Sourced and Is1
Available on Linux,” Microsoft Azure Blog,
18 August 2016, https://azure.microsoft.com/
en-us/blog/powershell-is-open-sourced-and-is-
available-on-linux/
Microsoft, “About Comparison Operators,” 2
8 June 2017, https://docs.microsoft.com/en-
us/powershell/module/microsoft.powershell.core/
about/about_comparison_operators?view=
powershell-6
Distributed Management Task Force, “Managed3
Object Format,” 13 December 2012,
https://www.dmtf.org/sites/default/files/
standards/documents/DSP0221_3.0.0.pdf
Microsoft, “Azure Automation State4
Configuration Overview,” 7 August 2018,
https://docs.microsoft.com/en-us/azure/
automation/automation-dsc-overview
Github, PowerShell/SqlServerDsc,”5
https://github.com/PowerShell/SqlServerDsc
Microsoft, “DSCEA - DSC Environment6
Analayzer,” https://microsoft.github.io/DSCEA/

Figure 10—Becoming Compliant

