
ISACA JOURNAL VOL 548

The value in software is realized only when the end
product is in the hands of its intended users.
Traditional software development can be slow,
requiring multiple manual reviews and approvals as
well as teams of specialists to perform specific
tasks as the software project progresses. To
increase the speed with which software is created
and delivered, many organizations are moving to
continuous integration and continuous deployment
(CICD), leveraging automated workflow and small
teams responsible for managing a change from
start to finish.

Traditionally, auditors have relied on reviews,
approvals and segregation of duties (SoD) to prove
that software releases meets management’s
expectation of the product. A CICD process is needed
that meets both the need for speed in software
delivery and auditors’ requirements for efficient and
effective change management practices.

Fundamentals of Change Management
The Information Technology Infrastructure Library
(ITIL) defines change as “the addition, modification
or removal of anything that could have an effect on
IT services.”1 Changes may occur to applications,
infrastructure components, documentation,
configurations, policies, access rules and any other
items that comprise a software product.

Change management underscores all software
development, enabling the ability to trace
management’s intention for a product through the
delivery of the deployed software and artifacts.
Traditional change management is accomplished
through reviews, testing, approvals and SoD. Each
action often requires the process to stop and wait
for manual action, such as a designation of
approval, before moving to the next stage of the
process. Of the 10 subprocesses defined by ITIL in
its change management process,2 eight incorporate
an inherent pause in the process for assessments
and authorizations.

Definition of CICD
ITIL’s fundamentals of change management are
timeless, but modern software development models
change the way they are applied. For example, in
CICD, software development and operations teams
develop and deploy changes continuously to an
application in small increments rather than in large,
infrequent releases.

CICD combines two elements: continuous
integration (CI) and continuous deployment (CD). In
CI, developers merge changes into a central source
code repository. With each change to the repository,
the application is rebuilt and automated test suites
are run against the rebuilt application (“the build”). If

Speeding Up Software Delivery With
Effective Change Management

Evan Bass, CISA
Is an accomplished audit executive with more than 15 years of combined Big 4 assurance and advisory consulting experience.
He is currently an internal auditor senior manager at Intuit, Inc., where he leads various projects from risk advisory, US Sarbanes-
Oxley Act (SOX) compliance to operational excellence reviews. Prior to joining Intuit, Bass was a manager of internal audit at
James Hardie. Bass also provided worldwide IT security and process advisory services at PricewaterhouseCoopers (PwC).

W. Noel Haskins-Hafer, CISA, CRISC, CISM, CGEIT, CFE, CIA, CRMA, ISA
Is the senior manager of technical compliance for Intuit, Inc.’s Consumer Group. She advises senior leadership on strategies for
developing cutting-edge financial management products that comply with US and international laws and regulations and
industry standards. The first industry representative to San Diego State University’s (California, USA) Center for the Teaching of
Critical and Creative Thinking, Haskins-Hafer has published 12 articles on topics of interest to the audit, software engineering,
project management and leadership communities.

FEATURE

Do you have
something
to say about this
article?
Visit the Journal
pages of the ISACA®

website (www.isaca.
org/journal), find the
article and click on
the Comments link to
share your thoughts.

https://bit.ly/2M9lFTa

ISACA JOURNAL VOL 5 49

a test case fails, the developer can investigate and
resolve the failure quickly. With continuous
integration, the software is in a working state at all
times.3 In theory, each integration improves the
application incrementally. CD expands on CI by taking
integration output that has met release criteria and
updating the application in production with the
integration output. Effective continuous deployment
includes the ability to abort deployment and/or roll
back to the prior version of the application if the
integration output could degrade the live application
in production.4 CD depends on automation to detect
success or failure of an integration as it moves
through CICD stages. In a true CD environment, there
is no interruption of the progression of a deliverable
from integration to deployment.5

Goals and Benefits of CICD
The goal of CICD is to deliver high-quality, valuable
software in an efficient, fast and reliable manner.6

While commonly attributed to Agile programming
and the first principle of the Agile Manifesto,7 there
is no requirement to practice Agile, or any other
programming methodology, to reap the benefits
of CICD.

An effective, high-performing CICD process brings
many benefits, including lower release risk due to
incremental deliveries, frequent feedback on
software quality, increased reliability through
automated deployment processes and reduced
delays due to manual milestones.

Characteristics of a Compliant CICD
Environment
A compliant change management process is one in
which all changes conform to the documented
process, and exceptions are rare and acceptable to
management. Common characteristics include:

Quality—Everyone involved throughout the build,•
test and deploy processes, and across all layers
of the pipeline, has a stake in the quality of the
deliverable and in ensuring errors, which create
rework, are avoided across the enterprise.

Consistency—An effective CICD environment•
includes guidelines for ensuring activities are
carried out consistently and potential effects of
changes to any and all relevant CICD components
are considered during decision-making.

Pervasiveness—Once established, the CICD•
environment should become the single standard
for deploying all relevant artifacts, including
deliverables and the CICD pipeline itself. Artifacts
include, but are not limited to, software,
documentation, processes, configurations,
execution scripts, test scripts, test suites and
credentials used to secure deliverables. Special-
purpose deployment paths should be
discouraged as they can lead to varying levels of
quality and interoperability.

Scalability—Effective CICD relies on efficiency•
throughout the pipeline and the technology
stack. Stopping for one-off, tailored actions
slows down delivery and defeats the purpose of
CICD. The environment should be designed to
meet anticipated use and future workload and
include flexibility of automation to accommodate
that workload.

Reliability and adequacy—Automation is core to•
CICD, especially where testing is concerned. Since
it is not practical to run the entire test suite against
every change for every test step in the process,
there should be a strategy for testing throughout
the CICD process. This should include designating
specific goals for each test stage and carefully
selecting tests that together result in robust and
representative testing through the delivery pipeline.
The test data should be comprehensive enough to
adequately validate deliverables without
unnecessary repetition and delays.

Governance for CICD Change
Management
Sustainable CICD is founded on good change
management governance. Teams must know what
they can expect from CICD as well as what they are
expected to do to use the process. CICD change

IN CICD, SOFTWARE DEVELOPMENT AND
OPERATIONS TEAMS DEVELOP AND DEPLOy
CHANGES CONTINUOUSLy TO AN
APPLICATION IN SMALL INCREMENTS
RATHER THAN IN LARGE, INFREqUENT
RELEASES.

ISACA JOURNAL VOL 550

management governance should hold to these
principles:

To what systems, processes and aspects of a•
business CICD applies (applicability)

The processes, pipeline, protocols and other •
CICD components working as expected at all
times (reliability)

Consistency in the use of the CICD process,•
pipeline and protocols, regardless of which
application or artifact is being processed.
Deviations are documented and changes
communicated to stakeholders with sufficient
notice for the stakeholders to make any
adjustments necessary to ensure consistency
remains intact.

Additionally, CICD should include these policies:

Documentation of each change—Policies should•
outline acceptable use of change management
ticketing, source control and executable build
workflow tools. For example, a change ticket can
be required to include specific information, such
as a description of and reason for the change and
any regulatory requirements for such change.8

For audit purposes, information regarding build
contents, creation, progression through the

pipeline and timeline of that progression should
be maintained, preferably through automation or
configuration of the tools used to build the
deliverable. For both audit and troubleshooting,
documentation for released artifacts should
provide a formal audit trail of evidence
demonstrating major activities occurring
throughout the change process. Each change
should document the reason for the change, how
it was evaluated for design and operational
effectiveness, and when it was deployed to
production.

Documentation of CICD processes and•
acceptance criteria—The CICD process
documentation should be clear and current. The
criteria for allowing a change to progress
automatically from one stage of the CICD pipeline
to the next must be consistent and documented
in writing. Exceptions to the criteria should be
noted, along with instructions for documenting
exception requirements (e.g., management
approval, compensating tests or move-forward
expectations). If the pipeline can be configured to
suit different teams’ specific needs, approved
pipeline patterns should be used to ensure all
required components of a compliance CICD
pipeline are in place.Emergency change
procedures should require the team to
retroactively run the change through the standard
change management process and review what
led to the emergency to avoid recurrence.

Access control—Because automation replaces•
many traditional “extra set of eyes” checkpoints,
pipeline integrity becomes a proxy for SoD. There
should be clear delineation between teams
responsible for the pipeline infrastructure and
those using it. The source control tool can be
configured to effectively segregate duties through
access (e.g., only engineers working on the CICD
pipeline infrastructure can make changes to
infrastructure components and/or configurations
and patterns). Exceptions should be rare, approved,
documented and monitored while active.

Audit trail of all approvals and test results—•
Automated decisions made by CICD systems,
along with the data used to make such decisions,
should be recorded and, ideally, automatically
documented into the change request ticket.

Logging—All actions taken by developers and•
other CICD participants should be logged. There
should be no ability to override controls to hide

SUSTAINABLE CICD IS
FOUNDED ON GOOD
CHANGE MANAGEMENT
GOVERNANCE.

ISACA JOURNAL VOL 5 51

Figure 1— Controls for Change Management in CICD

Control ID Minimal Required Controls

CM-01 Changes are documented and tested with evidence of acceptable results retained prior to deployment in the
production environment.

CM-02 All changes are documented. Prior to deployment, change documentation must include, at a minimum:
• Description of the change
• Success criteria
• Risk assessment/impact of the proposed change
• Rollback procedures
• Evidence of reviews and approvals by an independent party
• Evidence of testing and results

CM-03 Developers cannot approve their own success criteria.

CM-04 All changes and test cases are reviewed by an individual other than the person who developed the change.

CM-05 Test libraries are periodically reviewed for completeness, accuracy and validity.

CM-06 All changes and test cases must be deployed through an approved release platform, using approved release
platform templates.

CM-07 Pipeline templates are defined and periodically reviewed for integrity of milestone criteria.

CM-08 SoD is maintained between product and pipeline teams.

CM-09 The deployment pipeline is managed separately from product artifacts.

events and actions taken. Access to change logs
should be restricted. Logging activities should
differentiate among pipeline activities
(infrastructure), pipeline consumers (developers)
and systematic pipeline components (build
creation and test tools). Additionally, alerts
should be issued for any that may have
circumvented the established CICD process.

CICD component management—For maximum•
benefit, the CICD environment and its
components must work flawlessly together at all
times. A complete inventory of all components
(i.e., code, scripts, tests, development and testing
criteria), along with each component’s intended
use, owner, dependencies and interfaces, should
be available, current and maintained under source
control. This information can reduce the amount
of time the pipeline is stopped due to
configuration errors.

Monitoring acceptance criteria in the CICD•
pipeline—Management should define acceptance
criteria, or thresholds, all changes must meet
before moving to the next step in the automated
process. Corresponding documentation should
record how each threshold was determined, steps
for exception processing if the thresholds are not
met, periodic reviews of all thresholds, and
actions and consequences for noncompliance.
To ensure continued applicability, reliability and

consistency of the pipeline, applications and
CICD process as they evolve, the acceptance
criteria should be monitored and updated as
needed and the documentation updated to reflect
those changes.

Infrastructure monitoring—The infrastructure,•
including the CICD pipeline, should undergo
periodic regression testing, including penetration
or security vulnerability testing as deemed
appropriate. Because environments from
development through production are tightly
integrated, each environment should be secured
as if production relies on it—because, in fact,
production does.

Controls for CICD Change Management
Change management is concerned with two
primary areas of risk:

An unauthorized or unapproved change is•
promoted to the production environment.

Deployed changes do not function properly.•

Figure 1 sets forth the minimal required controls for
change management in CICD, and figure 2 lists
additional optional controls for consideration.
Implementing these controls and retaining evidence
that they have been implemented will both minimize
the areas of risk and meet auditor expectations.

Enjoying
this article?

• Read Change
Management
Audit/Assurance
Program.
www.isaca.org/
auditprograms

ISACA JOURNAL VOL 552

Compliant CICD Is Achievable
On the surface, CICD appears to neglect many of the
core elements auditors rely on to demonstrate
effective change management: independent reviews
and approvals, current and detailed documentation of
the process, and segregation of duties.

CICD advocates and auditors alike can embrace the
benefits of efficient and effective CICD, providing it
demonstrates the core attributes of auditing:

Accuracy and completeness of the product relative•
to its functional and nonfunctional requirements

Integrity of processing and use, such that flaws•
cannot be exploited or abused

Continuity of operations to support product•
availability

Security of processing and data•

Traceability of development and transactional•
activities such that any activity performed within
or on the system can be traced without a gap
from its inception to its final disposition

Implementing the recommended governance
policies and controls into a CICD methodology
supports the attributes listed above, and thus
enables an organization to remain compliant with
audit and regulatory expectations while realizing the
value of delivering software changes to intended
users quickly and efficiently.

Change Request Contents
Change requests allow auditors to trace a change
through the CICD process. Compliant change
requests include:

Description and priority of the change•

Components being changed•

Artifact category (e.g., code, test script, •
database table)

Change category (e.g., enhancement, bug)•

Party/parties responsible for the change•

Tests and acceptance criteria for change•
progression through the CICD process

Rollback procedures•

CICD configuration used•

While this information should be documented for all
changes, it does not need to be included in every
change ticket. In some cases, the information can
be documented as part of a common process; for
example, if the same process is used to manage
exceptions within a given CICD stage, the process
can be documented once in a process document
(wiki or otherwise) and maintained as appropriate.
Where a given set of tests is used for regression or
as success factors to move to the next stage-gate,
it may be more efficient to refer to the test set than
to list out all the specific tests, or to document that
test set in the process document describing the
CICD stage acceptance criteria.

Endnotes
AXELOS Limited, “ITIL Glossary of Terms,” 1
2011, https://www.axelos.com/Corporate/
media/Files/Glossaries/ITIL_2011_Glossary_
GB-v1-0.pdf
The ITIL subprocesses are: Assessment of2
Change Proposals, Request for Change
Logging and Review, Assessment and

Figure 2—Potential Additional Change Management Controls in CICD

Control ID Additional Controls for Consideration

CM-10 Business approval of proposed changes occurs prior to development activities.

CM-11 Documentation of changes is stored in a central repository.

CM-12 All dependencies are defined and documented prior to deployment of the change.

CM-13 Supporting documentation, including procedures and user guidance, are updated prior to deployment.

CM-14 Deliverables and artifacts are maintained in a central source control repository.

CM-15 Change documentation and test results are stored in accordance with relevant data retention policies.

CM-16 Release content information is retained for a period required to meet relevant regulatory requirements.

ISACA JOURNAL VOL 5 53

Implementation of Emergency Changes,
Change Assessment by the Change Manager,
Change Assessment by the Change Approval
Board, Change Scheduling and Build
Authorization, Change Deployment
Authorization, Minor Change Deployment, and
Post Implementation Review and Change
Closure. Design of Emergency and Minor
Changes may not incorporate an in-stream stop
for review and approval.
Humble, J.; D. Farley; Continuous Delivery:3
Reliable Software Releases Through Build, Test,
and Deployment Automation, Addison-Wesley,
USA, 2011
Caum, C.; “Continuous Deliver vs. Continuous4
Deployment: What’s the Diff?” Puppet, 30
August 2013, https://puppet.com/blog/
continuous-delivery-vs-continuous-deployment-
what-s-diff

Some organizations may instead adopt5
continuous delivery, where a build is promoted
to a staging environment, tested extensively
and paused to allow a manual inspection to
ensure that deliverables are ready for
production release. In continuous delivery,
every change should be deployable at any time.
Op cit Humble and Farley6
Agile, “Principles Behind the Agile Manifesto,”7
2001, http://agilemanifesto.org/principles.html
For example, the Payment Card Industry Data8
Security Standard (PCI DSS) require each
change to have documentation of an approval
for the change, an assessment of the impact of
the change, tests run to validate the change
and the status of the testing, and roll-back
procedures.

