
Applying AI in Application Security

Kiran Maraju, CEH,
CISSP
Has 18 years of
information security
experience and is
involved in multiple
network, web
application and mobile
security vulnerability
assessments. He also
has experience with
penetration testing,
security code review,
software development
life cycle security,
network security,
database security
and wireless security
assessments. Maraju is
working as a specialist
leader for Deloitte.
Prior to that, he worked
as a scientist for the
Indian Space Research
Organization (ISRO).

Machine Learning DTL—Application
Security Attack Threat Identification
DTL is a form of inductive learning that uses a
training set of examples to create a hypothesis
that makes general conclusions. It also determines
best attribute paths of attack (threats) if possible.
During decision-tree development, a set of training
examples is divided into smaller subsets and an
associated decision tree is developed incrementally.
A decision tree covering the training set is returned
after completing the learning process. Figure 2
describes threat decision trees.

Cross-site scripting (XSS) is a web application
security vulnerability where input data submitted
to the web application are not validated properly
for malicious inputs. Attackers use this XSS
vulnerability to hijack sessions and use cookies and
for page defacement attacks.1

The following is a typical XSS scenario with training
examples, including attack paths with different
attributes available such as input data validation,
output data validation and data type. The tainted
data type values with possible data types are
returned to the end user (reflective XSS), saved
in the server (persistent XSS) or transferred to a
different system as input. By applying entropy and
gain values, the next-best-attribute decision tree
with an entropy value selected as root node and
with all subsequent branch nodes and root nodes is
constructed as depicted in figure 3.

The decision-tree method is a type of supervised
learning that involves attributes, training sets,

The use of artificial intelligence (AI) in cyber security
will help organizations enhance existing application
security capabilities. Application security covers
the security of web or thick client and mobile
applications that pass through various phases of
the security development life cycle, e.g., security
design and security coding. Various AI areas such
as machine learning and expert systems can be
leveraged to improve application security to derive,
predict or apply inferences to forecast security
threats, identify security vulnerabilities and identify
the security coding remediation guidance.

The following AI areas can be applied to application
security:

• �Machine learning—Decision-tree learning (DTL)
during threat identification

• �Expert systems—Forward chaining and backward
chaining for security code review and code review
guidance

Security auditors can make use of these techniques
to automate the attack threat identification and code
review process. The process involves developing
various decision support inference rules for various
application security vulnerabilities, applying the
decision and inference rules to expert systems, and
training the same systems using an algorithm with
the various application security attack scenarios and
attack paths. Security auditors can identify and infer
the possibility of successful attacks by providing
inputs to these machine-learning-based application
security expert systems. Figure 1 describes the
relationship between DTL and expert systems in
this process.

Do you have
something
to say about this
article?
Visit the Journal
pages of the ISACA®
website (www.isaca.
org/journal), find the
article and click on
the Comments link to
share your thoughts.

http://bit.ly/2AWQFDL

Figure 1—DTL, Forward Chaining and Backward Chaining

Decision-Tree Learning
(Machine Learning)

Forward Chaining
(Expert Systems)

Backward Chaining
(Expert Systems)

• Threat Identification • Security Code Review • Code Remediation

ISACA JOURNAL VOL 11

FEATURE

ISACA JOURNAL VOL 1 2

this will check for output data validation and, if output
data validation is not performed, it will check for data
type and provide the outcome as attack success
(i.e., XSS attack is possible) or attack fail (i.e., XSS
attack is not possible). For attack path P13, input
data validation is performed with the decision-tree
outcome attack fail. This means that XSS is not
possible using the above training sets.

Figure 3 is the XSS vulnerability decision tree.
Similar types of decision trees can be created
for various application security vulnerabilities to
correlate, identify and predict the security threats
once these decision trees are constructed for
various security vulnerabilities. These decision
support system rules can be leveraged as inference
rules for the application security expert systems.

Application Security Expert Systems
Expert systems are capable of interpreting the
provided input, advising and deriving a solution. They
also provide suggested alternatives to the problem
and predict the results. Figure 5 illustrates the
components of an expert system—knowledge base
and inference engine. The knowledge base comprises
information that is factual and heuristic (guessable),
including rules and facts. If-then-else rules are a part
of the knowledge representation. Information acquired
from security experts is fed to the expert systems in
the form of if-then-else rules to develop security expert
systems. Facts are the assertions.

and determining the best attribute according to
entropy and gain with algorithms such as Iterative
Dichotomiser 3 (ID3).2

The information gain (G), G(S,A) where A is an
attribute and S is a sample of training examples

p+ is the positive examples in S
p- is the negative examples in S

• �Entropy of S: Average optimal number of bits to
encode information about certainty/uncertainty.
Entropy (E) is the minimum number of bits needed
to classify an arbitrary example as yes or no.

Entropy(S) = -p+log2p+- p-log2p-

• �Gain(S,A): Reduction in entropy after choosing
attribute A

)()(),(
!"

v
v

AValuesv
SEntropy

S
S

SEntropyASGain =
!

Therefore, the entropy of the training data, E(S), can
be represented as E ([3+, 9-]) because out of the 12
training examples, three of them are attack success
and nine of them are attack fails. Figure 4 describes
attack paths and their outcomes.

The previous attack paths are provided as training
sets to the decision support system, and the input is
passed through this decision-support system. This
is depicted in figure 3 as the XSS attack decision
tree. When the input data validation is not performed,

Figure 2—Machine Learning and Threat Decision Trees

Machine Learning—Threat Decision Trees

User/
Security
Auditor

Vulnerability 1—
Cross-Site Scripting

Decision Tree Vulnerability 1
Decision 1
Decision 2

~
Decision N

Decision Tree Vulnerability 2
Decision 3
Decision4

~
Decision N

Vulnerability 2—
Structured Query
Language (SQL)

Injection

Input (Attack
Parameters)

Output
(Attack
Success/Fail)

ISACA JOURNAL VOL 13

Figure 3—XSS Attack Tree

Cross-Site Scripting (XSS) Attack Decision Tree

S (3+, 3–) E = 1 Not Performed

Transferred

Attack
Success

Attack
Success

Attack
Success

Saved

Not Performed

Data Type

Output
Validation

Returned

Performed

Performed

Attack Fail

Attack Fail

Input Validation

S (3+, 3–) E = 1

S (1+, 3–) E = 0.81

S (3+, 9–) E = 0.81

S (1+, 3–) E = 0.81

S (1+, 3–) E = 0.81

S (0+, 6–) E = 0

S (3+, 9–) E = 0.81

S (3+, 9–) E = 0.81

S (0+, 6–) E = 0

Gain (S, input) = 0.81 – 6/12*1 – 6/12*0 = 0.31
Gain (S, output) = 0.81 – 6/12*1 – 6/12*0 = 0.31
Gain (S, datatype) = 0.81 – 4/12*0.81 – 4/12*0.81 – 4/12*0.81= 0
Input Validation and Output Validation provides greater information gain
than Data type, w.r.t. target classification

Figure 4—Attack Paths and Outcomes
Attack Path Input Data Validation Data Type Output Validation Result (XSS Injection Attack)

P1 Not Performed Returned Not Performed Success
P2 Not Performed Returned Performed Fail
P3 Not Performed Saved Not Performed Success
P4 Not Performed Saved Performed Fail
P5 Not Performed Transferred Not Performed Success
P6 Not Performed Transferred Performed Fail
P7 Performed Returned Not Performed Fail
P8 Performed Returned Performed Fail
P9 Performed Saved Not Performed Fail

P10 Performed Saved Performed Fail
P11 Performed Transferred Not Performed Fail
P12 Performed Transferred Performed Fail
P13 Performed Returned Not Performed ??

ISACA JOURNAL VOL 1 4

Forward Chaining Inference Rules for SQL
Injection Vulnerability
The following are examples of the facts and rules
used to demonstrate the forward chaining inference
rules for SQL injection vulnerability.

Facts:

• Fact 1: X is a URL parameter.

• Fact 2: X contains a special character.

• Fact 3: X is not white-list input validation processed.

• Fact 4: X is passed through a database call.

Rules

• Rule 1: If X is a form parameter and X contains
special characters, then X is a tainted input.

• Rule 2: If X is a URL parameter and X contains
special characters, then X is a tainted input.

• Rule 3: If X is a cookie parameter and X contains
special characters, then X is a tainted input.

• Rule 4: If X is a file import and X contains special
characters, then X is a tainted input.

• Rule 5: If X is an HTTP header and X contains
special characters, then X is a tainted input.

• Rule 6: If X is a tainted input and input is not
white-list input validation processed, then X is an
unvalidated input.

Figure 5—Expert System Components

Security Code Review Inference Engine—
Expert Systems Forward Chaining
The security code review inference engine with
forward chaining3 can be used to predict values, i.e.,
deriving what can happen next. This will help the
security code review engines to actually determine
the type of attack. Figure 6 details the SQL injection4
vulnerability, with the forward chaining inference
rules using if-then-else rules by matching the
various conditions.

SQL injection is a web application security
vulnerability where input data submitted to web
applications are not validated properly for malicious
inputs. Using SQL injection vulnerability attacks,
attackers will inject malicious SQL commands to
the back-end database and exfiltrate database
details. Figure 7 describes the security code review
inference engine and forward chaining rules.

Figure 6—SQL Injection Vulnerability With Forward Chaining

Security Code Review Vulnerability Expert Systems—Forward Chaining

User/
Security
Auditor

Vulnerability 1—
SQL Injection

Inference Rule Set 1
Rule 1
Rule 2

~
Goal N

Inference Rule Set 1
Rule 3
Rule 4

~
Goal 2

Vulnerability 2—
Cross-Site Scripting

Input (Facts)

Output
(Matched
Vulnerability
Goal)

Application Security Expert System

Inference Engine

Knowledge Base
(Facts, Rules)

Working Memory

ISACA JOURNAL VOL 15

used for diagnosis of the values, i.e., deriving what
happened. This application security remediation
guidance expert system helps the developer to
determine various possible sub-goals (solutions) to
fix the vulnerabilities. Figure 9 describes backward
chaining expert systems that provide guidance for
security vulnerabilities with inputs as goals and facts
and outcomes as possible matched sub-goals.

Figure 10 details the application security
remediation guidance rules for SQL injection
remediation vulnerability where rules 14, 15 and 16
will be sub-goals. These sub-goals can be treated as
possible solutions that a developer can implement
to remediate the SQL attack, i.e., escape the input
or implement blacklist/white-list input validation for
special characters.

Backward Chaining Inference Rules for
Identifying SQL Injection Vulnerability
Recommendations
The goal is SQL injection, and the rules are:

• Rule 11: If X is a potential SQL injection input, then
X is an unvalidated input.

• Rule 7: If X is a tainted input and X is not
blacklist input validation processed, then X is an
unvalidated input.

• Rule 8: If X is a tainted input and not an escaping
input, then X is an unvalidated input.

• Rule 9: If X is an unvalidated input and X is
not processed in prepared statements (with
parameterized queries), then X is a potential SQL
injection input.

• Rule 10: If X is an unvalidated input and X is
passed through a database call, then X is a
potential SQL injection input.

Figure 8 details the rules matching the current
working memory, conflict set, rule fired and the next
cycle after a rule has fired.

Application Security Vulnerability
Remediation Guidance—Expert Systems
Backward Chaining
The application security remediation guidance
inference engine with backward chaining can be

Figure 8—Working Memory, Conflict Set and Rule-Fired Cycles
Cycle Working Memory Conflict Set Rule Fired

0 URL parameter, special characters, tainted input 2 2
1 URL parameter, special characters, tainted input, input not

whitelist input validation processed
2, 6 6

2 URL parameter, special characters, tainted input, input not
whitelist input validation processed, X is passed through a
database call

2, 6, 10 10

3 URL parameter, special characters, tainted input, input not
whitelist input validation processed, X is passed through a
database call, SQL injection

2, 6, 10 Halt

Figure 7—Security Code Review Inference Engine

Forward Chaining Rules

Goal

Vulnerable pattern
matching rules fired
with the matched
vulnerability goal.

ISACA JOURNAL VOL 1 6

• Rule 16: If X is an unvalidated input, then X is a
tainted input and X is not white-list input validation
processed (sub-goal).

• Rule 17: If X is a tainted input, then X is from HTTP
request header and X contains special characters.

• Rule 18: If X is a tainted input, then X is from file
import and X contains special characters.

• Rule 19: If X is a tainted input, then X is from
cookie parameter and X contains special
characters.

• Rule 12: If X is a potential SQL injection input, then
X is not processed in prepared statements (with
parameterized queries).

• Rule 13: If X is a potential SQL injection input, then
X is passed through a database call.

• Rule 14: If X is an unvalidated input, then X is a
tainted input and not an escaping input (sub-goal).

• Rule 15: If X is an unvalidated input, then X is a
tainted input and X is not blacklist input validation
processed (sub-goal).

Figure 10—Application Security Remediation and Sub-Goal Development

Application Security Remediation
Backward Chaining Rules

Goal

Sub-Goals

Sub-goals are
vulnerability
remediation options to
fix the vulnerability.

Figure 9—Application Security Vulnerability Remediation Guidance
Expert Systems, Backward Chaining

User/
Security
Auditor

Vulnerability 1—
SQL Injection

Goal 1
Inference Rule 1
Inference Rule 2

~
Sub-Goal 1

Goal 2
Inference Rule 3
Inference Rule 4

~
Sub-Goal 2

Vulnerability 2—
Cross-Site Scripting

Input
(Goal and Facts)

Output
(Matched
Vulnerability
Sub-Goals)

ISACA JOURNAL VOL 17

security expert systems. Training sets are
incrementally developed to create hypotheses
to derive conclusions. The application security
expert systems with forward and backward
chaining can also be used to determine the security
vulnerabilities, i.e., deriving consequences based on
possible antecedents (matched rules), and can also
be used for advising security vulnerability coding
remediation solutions to fix the vulnerabilities.

Endnotes
1	� Open Web Application Security Project, Cross-Site

Scripting (XSS), https://www.owasp.org/index.
php/Cross-site_Scripting_(XSS)

2	� Quinlan, J. R.; “Induction of Decision Trees,”
Machine Learning 1, p. 81–106, Kluwer
Academic Publishers, USA, 1986, www.hunch.
net/~coms-4771/quinlan.pdf

3	� Al-Ajlan, A.; “The Comparison Between Forward
and Backward Chaining,” International Journal of
Machine Learning and Computing, vol. 5, iss. 2,
2015, p. 106–113, www.ijmlc.org/vol5/492-A14.pdf

4	� Open Web Application Security Project, SQL
Injection, https://www.owasp.org/index.php/SQL_
Injection

• Rule 20: If X is a tainted input, then X is from URL
parameter and X contains special characters.

• Rule 21: If X is a tainted input, then X is from
parameter and X contains special characters.

Figure 11 details the rules matching the current
working memory, conflict set, rule fired and the next
cycle after a rule has fired.

Working memory (WM) = ([unvalidated input] [tainted
input] [not escaping input] [not white-list input
validation processed] [not blacklist input validation
processed]) comprises the various methods (sub-
goals) that can be considered as possible solutions to
remediate the SQL injection vulnerability.

Conclusion
Decision-tree machine learning and application
security expert system techniques can be leveraged
to automate decision-making to determine the
next best attributes to use to identify the attack
paths to classify/identify security threats, security
vulnerabilities and code remediation guidance. This
can be achieved by identifying and providing all
possible attack scenarios to DTL and application

Figure 11—SQL Injection Working Memory, Conflict Set and Rule-Fired Cycles
Cycle Working Memory Conflict Set Rule Fired

0 SQL injection input 11, 12, 13 11
1 SQL injection input, unvalidated input 11, 12, 13, 14, 15, 16 14
2 SQL injection input, unvalidated input, tainted input and not

escaping input
11, 12, 13, 14, 15, 16 15

3 SQL injection input, unvalidated input, tainted input and not
escaping input, not white-list input validation processed, not
blacklist input validation processed

11, 12, 13, 14, 15, 16 16

4 SQL injection input, unvalidated input, tainted input and not
escaping input, not white-list input validation processed, not
blacklist input validation processed

11, 12, 13, 14, 15, 16 Halt

