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Machine Learning DTL—Application 
Security Attack Threat Identification
DTL is a form of inductive learning that uses a 
training set of examples to create a hypothesis 
that makes general conclusions. It also determines 
best attribute paths of attack (threats) if possible. 
During decision-tree development, a set of training 
examples is divided into smaller subsets and an 
associated decision tree is developed incrementally. 
A decision tree covering the training set is returned 
after completing the learning process. Figure 2 
describes threat decision trees.

Cross-site scripting (XSS) is a web application 
security vulnerability where input data submitted 
to the web application are not validated properly 
for malicious inputs. Attackers use this XSS 
vulnerability to hijack sessions and use cookies and 
for page defacement attacks.1  

The following is a typical XSS scenario with training 
examples, including attack paths with different 
attributes available such as input data validation, 
output data validation and data type. The tainted 
data type values with possible data types are 
returned to the end user (reflective XSS), saved 
in the server (persistent XSS) or transferred to a 
different system as input. By applying entropy and 
gain values, the next-best-attribute decision tree 
with an entropy value selected as root node and 
with all subsequent branch nodes and root nodes is 
constructed as depicted in figure 3.

The decision-tree method is a type of supervised 
learning that involves attributes, training sets, 

The use of artificial intelligence (AI) in cyber security 
will help organizations enhance existing application 
security capabilities. Application security covers 
the security of web or thick client and mobile 
applications that pass through various phases of 
the security development life cycle, e.g., security 
design and security coding. Various AI areas such 
as machine learning and expert systems can be 
leveraged to improve application security to derive, 
predict or apply inferences to forecast security 
threats, identify security vulnerabilities and identify 
the security coding remediation guidance. 

The following AI areas can be applied to application 
security: 

• �Machine learning—Decision-tree learning (DTL) 
during threat identification

• �Expert systems—Forward chaining and backward 
chaining for security code review and code review 
guidance 

Security auditors can make use of these techniques 
to automate the attack threat identification and code 
review process. The process involves developing 
various decision support inference rules for various 
application security vulnerabilities, applying the 
decision and inference rules to expert systems, and 
training the same systems using an algorithm with 
the various application security attack scenarios and 
attack paths. Security auditors can identify and infer 
the possibility of successful attacks by providing 
inputs to these machine-learning-based application 
security expert systems. Figure 1 describes the 
relationship between DTL and expert systems in  
this process.
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Figure 1—DTL, Forward Chaining and Backward Chaining
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this will check for output data validation and, if output 
data validation is not performed, it will check for data 
type and provide the outcome as attack success 
(i.e., XSS attack is possible) or attack fail (i.e., XSS 
attack is not possible). For attack path P13, input 
data validation is performed with the decision-tree 
outcome attack fail. This means that XSS is not 
possible using the above training sets.

Figure 3 is the XSS vulnerability decision tree. 
Similar types of decision trees can be created 
for various application security vulnerabilities to 
correlate, identify and predict the security threats 
once these decision trees are constructed for 
various security vulnerabilities. These decision 
support system rules can be leveraged as inference 
rules for the application security expert systems.

Application Security Expert Systems
Expert systems are capable of interpreting the 
provided input, advising and deriving a solution. They 
also provide suggested alternatives to the problem 
and predict the results. Figure 5 illustrates the 
components of an expert system—knowledge base 
and inference engine. The knowledge base comprises 
information that is factual and heuristic (guessable), 
including rules and facts. If-then-else rules are a part 
of the knowledge representation. Information acquired 
from security experts is fed to the expert systems in 
the form of if-then-else rules to develop security expert 
systems. Facts are the assertions.

and determining the best attribute according to 
entropy and gain with algorithms such as Iterative 
Dichotomiser 3 (ID3).2 

The information gain (G), G(S,A) where A is an 
attribute and S is a sample of training examples

p+ is the positive examples in S
p- is the negative examples in S

• �Entropy of S:  Average optimal number of bits to 
encode information about certainty/uncertainty. 
Entropy (E) is the minimum number of bits needed 
to classify an arbitrary example as yes or no.

Entropy(S) = -p+log2p+- p-log2p-

• �Gain(S,A):  Reduction in entropy after choosing 
attribute A
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Therefore, the entropy of the training data, E(S), can 
be represented as E ([3+, 9-]) because out of the 12 
training examples, three of them are attack success 
and nine of them are attack fails. Figure 4 describes 
attack paths and their outcomes.

The previous attack paths are provided as training 
sets to the decision support system, and the input is 
passed through this decision-support system. This 
is depicted in figure 3 as the XSS attack decision 
tree. When the input data validation is not performed, 

Figure 2—Machine Learning and Threat Decision Trees
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Figure 3—XSS Attack Tree
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Gain (S, input) = 0.81 – 6/12*1 – 6/12*0 = 0.31
Gain (S, output) = 0.81 – 6/12*1 – 6/12*0 = 0.31
Gain (S, datatype) = 0.81 – 4/12*0.81 – 4/12*0.81 – 4/12*0.81= 0
Input Validation and Output Validation provides greater information gain
than Data type, w.r.t. target classification

Figure 4—Attack Paths and Outcomes
Attack Path Input Data Validation Data Type Output Validation Result (XSS Injection Attack)

P1 Not Performed Returned Not Performed Success
P2 Not Performed Returned Performed Fail
P3 Not Performed Saved Not Performed Success
P4 Not Performed Saved Performed Fail
P5 Not Performed Transferred Not Performed Success
P6 Not Performed Transferred Performed Fail
P7 Performed Returned Not Performed Fail
P8 Performed Returned Performed Fail
P9 Performed Saved Not Performed Fail

P10 Performed Saved Performed Fail
P11 Performed Transferred Not Performed Fail
P12 Performed Transferred Performed Fail
P13 Performed Returned Not Performed ??
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Forward Chaining Inference Rules for SQL 
Injection Vulnerability
The following are examples of the facts and rules 
used to demonstrate the forward chaining inference 
rules for SQL injection vulnerability. 

Facts:

• Fact 1:  X is a URL parameter.

• Fact 2:  X contains a special character.

• Fact 3:  X is not white-list input validation processed.

• Fact 4:  X is passed through a database call.

Rules

• Rule 1:  If X is a form parameter and X contains 
special characters, then X is a tainted input.

• Rule 2:  If X is a URL parameter and X contains 
special characters, then X is a tainted input.

• Rule 3:  If X is a cookie parameter and X contains 
special characters, then X is a tainted input.

• Rule 4:  If X is a file import and X contains special 
characters, then X is a tainted input.

• Rule 5:  If X is an HTTP header and X contains 
special characters, then X is a tainted input.

• Rule 6:  If X is a tainted input and input is not 
white-list input validation processed, then X is an 
unvalidated input.

Figure 5—Expert System Components
 

Security Code Review Inference Engine—
Expert Systems Forward Chaining
The security code review inference engine with 
forward chaining3 can be used to predict values, i.e., 
deriving what can happen next. This will help the 
security code review engines to actually determine 
the type of attack. Figure 6 details the SQL injection4 
vulnerability, with the forward chaining inference 
rules using if-then-else rules by matching the  
various conditions. 

SQL injection is a web application security 
vulnerability where input data submitted to web 
applications are not validated properly for malicious 
inputs. Using SQL injection vulnerability attacks, 
attackers will inject malicious SQL commands to 
the back-end database and exfiltrate database 
details. Figure 7 describes the security code review 
inference engine and forward chaining rules.

Figure 6—SQL Injection Vulnerability With Forward Chaining
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used for diagnosis of the values, i.e., deriving what 
happened. This application security remediation 
guidance expert system helps the developer to 
determine various possible sub-goals (solutions) to 
fix the vulnerabilities. Figure 9 describes backward 
chaining expert systems that provide guidance for 
security vulnerabilities with inputs as goals and facts 
and outcomes as possible matched sub-goals.

Figure 10 details the application security 
remediation guidance rules for SQL injection 
remediation vulnerability where rules 14, 15 and 16 
will be sub-goals. These sub-goals can be treated as 
possible solutions that a developer can implement 
to remediate the SQL attack, i.e., escape the input 
or implement blacklist/white-list input validation for 
special characters. 

Backward Chaining Inference Rules for 
Identifying SQL Injection Vulnerability 
Recommendations
The goal is SQL injection, and the rules are:

• Rule 11:  If X is a potential SQL injection input, then 
X is an unvalidated input.

• Rule 7:  If X is a tainted input and X is not 
blacklist input validation processed, then X is an 
unvalidated input.

• Rule 8:  If X is a tainted input and not an escaping 
input, then X is an unvalidated input.

• Rule 9:  If X is an unvalidated input and X is 
not processed in prepared statements (with 
parameterized queries), then X is a potential SQL 
injection input.

• Rule 10:  If X is an unvalidated input and X is 
passed through a database call, then X is a 
potential SQL injection input.

Figure 8 details the rules matching the current 
working memory, conflict set, rule fired and the next 
cycle after a rule has fired. 

Application Security Vulnerability 
Remediation Guidance—Expert Systems 
Backward Chaining
The application security remediation guidance 
inference engine with backward chaining can be 

Figure 8—Working Memory, Conflict Set and Rule-Fired Cycles
Cycle Working Memory Conflict Set Rule Fired

0 URL parameter, special characters, tainted input 2 2
1 URL parameter, special characters, tainted input, input not 

whitelist input validation processed
2, 6 6

2 URL parameter, special characters, tainted input, input not 
whitelist input validation processed, X is passed through a 
database call

2, 6, 10 10

3 URL parameter, special characters, tainted input, input not 
whitelist input validation processed, X is passed through a 
database call, SQL injection

2, 6, 10 Halt

Figure 7—Security Code Review Inference Engine

Forward Chaining Rules

Goal

Vulnerable pattern
matching rules fired
with the matched
vulnerability goal.



ISACA JOURNAL VOL 1 6

• Rule 16:  If X is an unvalidated input, then X is a 
tainted input and X is not white-list input validation 
processed (sub-goal).

• Rule 17:  If X is a tainted input, then X is from HTTP 
request header and X contains special characters.

• Rule 18:  If X is a tainted input, then X is from file 
import and X contains special characters. 

• Rule 19:  If X is a tainted input, then X is from 
cookie parameter and X contains special 
characters.

• Rule 12:  If X is a potential SQL injection input, then 
X is not processed in prepared statements (with 
parameterized queries).

• Rule 13:  If X is a potential SQL injection input, then 
X is passed through a database call.

• Rule 14:  If X is an unvalidated input, then X is a 
tainted input and not an escaping input (sub-goal).

• Rule 15:  If X is an unvalidated input, then X is a 
tainted input and X is not blacklist input validation 
processed (sub-goal).

Figure 10—Application Security Remediation and Sub-Goal Development
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security expert systems. Training sets are 
incrementally developed to create hypotheses 
to derive conclusions. The application security 
expert systems with forward and backward 
chaining can also be used to determine the security 
vulnerabilities, i.e., deriving consequences based on 
possible antecedents (matched rules), and can also 
be used for advising security vulnerability coding 
remediation solutions to fix the vulnerabilities.
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• Rule 20:  If X is a tainted input, then X is from URL 
parameter and X contains special characters.

• Rule 21:  If X is a tainted input, then X is from 
parameter and X contains special characters.

Figure 11 details the rules matching the current 
working memory, conflict set, rule fired and the next 
cycle after a rule has fired. 

Working memory (WM) = ([unvalidated input] [tainted 
input] [not escaping input] [not white-list input 
validation processed] [not blacklist input validation 
processed]) comprises the various methods (sub-
goals) that can be considered as possible solutions to 
remediate the SQL injection vulnerability.

Conclusion
Decision-tree machine learning and application 
security expert system techniques can be leveraged 
to automate decision-making to determine the 
next best attributes to use to identify the attack 
paths to classify/identify security threats, security 
vulnerabilities and code remediation guidance. This 
can be achieved by identifying and providing all 
possible attack scenarios to DTL and application 

Figure 11—SQL Injection Working Memory, Conflict Set and Rule-Fired Cycles
Cycle Working Memory Conflict Set Rule Fired

0 SQL injection input 11, 12, 13 11
1 SQL injection input, unvalidated input 11, 12, 13, 14, 15, 16 14
2 SQL injection input, unvalidated input, tainted input and not 

escaping input
11, 12, 13, 14, 15, 16 15

3 SQL injection input, unvalidated input, tainted input and not 
escaping input, not white-list input validation processed, not 
blacklist input validation processed

11, 12, 13, 14, 15, 16 16

4 SQL injection input, unvalidated input, tainted input and not 
escaping input, not white-list input validation processed, not 
blacklist input validation processed

11, 12, 13, 14, 15, 16 Halt


