
ISACA JOURNAL VOL 31

from security defects. This article describes the
assurance techniques and processes involved in
securing such applications and provides guidance
on implementation across the IoT environment.

IoT Software Components

Each IoT component has its own software. How
can there be assurance that, while running in a real
environment, the component is not allowing malicious
persons to hack the software and get access to the
data and information collected by devices? Secure
software development life cycle (S-SDLC) is the
answer to software security assurance. Figure 1
depicts typical IoT components.

During the Internet of Things (IoT) Village held at the
DEF CON security conference in August 2016, 47
new vulnerabilities affecting 23 IoT devices from 21
manufacturers were disclosed.1 Among these 47
vulnerabilities were software-related vulnerabilities,
e.g., design flaws, hard-coded passwords,
configuration secrets, cryptographic issues, and
common coding flaws, such as buffer overflows,
invalidated inputs and command injection.

The software running on the devices, gateways,
mobile and data center applications, and the
interfacing application program interfaces (APIs)
from which the services are consumed should be
subjected to assurance to ensure they are free

Security Assurance in the SDLC
for the Internet of Things

Sivarama Subramanian, CISA
Is principal security architect at Cognizant
Technology Solutions, where he is leading the
integrated vulnerability assessment delivery
and research, enabling new service rollouts
and aligning new security trends with customer
needs. Subramanian can be reached at
sivaramasubramanian.kailasam@cognizant.com.

Balaji Swaminathan M., CISA, CISSP
Is a security architect at Cognizant Technology
Solutions, where he is managing the integrated
vulnerability assessment delivery and research,
enabling new service rollouts, and aligning
new security trends with customer
needs. Swaminathan can be reached at
balajiswaminathan.m@cognizant.com.

Do you have
something
to say about
this article?
Visit the Journal
pages of the ISACA®
website (www.isaca.
org/journal), find the
article and click on
the Comments link to
share your thoughts.

Figure 1—Typical IoT Components

Source: S. Subramanian and B. Swaminathan. Reprinted with permission.

Device 2

Device 1

Gateway or
Controller

Node

Cloud and
Data Center
Spplications

Bluetooth, MQTT, Wi-Fi
Zigbee, 6LOWPAN, Zwave
Wired, Wi-Fi, 3G/4G
Wi-Fi, 3G/4G
Serial, Optical Ports

Physical
Maintenance

Mobile
Applications

Device 3

Device n

ISACA JOURNAL VOL 3 2

featurefeature

• �Unsigned firmware—Forcing the devices to
download firmware from unauthorized sources
without validation

Following a secure SDLC approach would
mitigate the common coding flaws and software
vulnerabilities related to IoT components.

Secure SDLC Steps to Address
Common Coding Flaws and
Software Vulnerabilities

The cost of fixing a security bug varies depending
on where it is discovered. If it is discovered in
the production environment, the cost of fixing it
would include the tangible costs of the developer
effort, tester effort, user acceptance testing effort
and deployment effort, and the intangible cost of
reputation and customer trust. If it is discovered
during the design phase, then it is very easy to
correct the design flaw and introduce a security
measure during the development phase. The cost of
fixing a defect postproduction is approximately four
times more than fixing it in the development stage.2

IoT software assurance is the level of confidence
and trust that software is free from vulnerabilities
(either intentionally designed into the software or
accidentally inserted at any time during its life cycle)
and the software functions in the intended manner.

Security assurance for IoT applications can be best
achieved through the adoption of a defense-in-depth
strategy, which, in turn, warrants having a secure
SDLC practice (figure 2) in place. The principal
intent is to build security within the life cycle of
these applications from ground zero that potentially
and gradually reduces the flaws in security, design,
implementation and deployment. Proper adherence
to such assurance best practices will result in
applications devoid of vulnerabilities that might have

Security should be embedded into the development
cycle of the IoT components—be they the device
firmware, gateway source code, application source
code or API source code.

Applications in a typical IoT environment might fall
into one of the following categories:

1. �Device applications that reside on the nodes
and gateways, e.g., a node.js- or python-based
application running on a smart energy meter

2. �Controlling applications that control and regulate
the IoT environment, e.g., web-based or non-
web-based applications built on Java, Dot Net,
Perl or PHP, typically residing in the data center
or the mobile application operating system, from
where the devices can be controlled

3. �Consuming applications that receive data from
the devices for further processing, e.g., web- or
non-web-based applications, typically residing
in the data center, that perform analytics on the
received data

4. �Relay services that format and transfer data
between different components, e.g., APIs, web
services that transport the data across devices,
applications and other IoT components

There are two categories of vulnerabilities related to
software. Those are:

1. �An insecure web interface, which could allow some
of the following common attacks to take place:

• �Injection attacks—Malicious execution
of scripts, database queries, system-level
commands injected to apps

• �Unprotected secrets—Cleartext/unencrypted
configuration secrets, keys and passwords

• �Privilege escalation—Elevating user privileges
and user impersonation

2. �Insecure software/firmware that allows malicious
users to change the software or compromise the
device, which can be used as a BOT (software
robot) device. The following are some common
attacks:

• �Firmware corruption—Sending malicious
firmware that could improperly format the
device logic or install a backdoor

 The cost of fixing a defect
postproduction is approximately
four times more than fixing it in
the development stage.

ISACA JOURNAL VOL 33

• Category by development type—The category
by development type depends on where the
software/API was developed, e.g., in-house
development, vendor/partner development,
commercial/commercial off-the-shelf or open
source. This is also vital in deriving the security
governance and policies with which to adhere for
each of these types.

• Category by application type—The category
by application type depends on where the
software or the API resides, e.g., device (nodes or
gateways), cloud/data center servers, mobile or
desktops. This would dictate the secure coding
guidelines, checklists, security configuration
applicable to each of the application types in line
with the security policies.

The S-SDLC control gates, such as design review/
threat modeling in the design phase or static
application security testing in the development
phase, have to be mandated. The entire SDLC cycle
has to be monitored and managed for continuous
improvement in delivering rapid-yet-secure software
to production. Such managed solutions are vital to
ease the security assurance process and are highly
recommended.

been introduced accidentally or intentionally at any
point of time in their life cycle.

Inception and Requirements

Effective security management of the components
involved is a critical focus area because a typical
IoT environment is spread widely, both physically
(with numerous devices) and logically (with multiple
technologies and applications). This effective
management can be achieved only with a proper
inventory of what is to be managed, such as:

Figure 2—A Secure SDLC

Source: S. Subramanian and B. Swaminathan. Reprinted with permission.

Inception
Requirements

Analysis
Architecture

and
Design

Development Testing Deployment Steady
State

Bring our need
for security in
SDLC

Security
awareness
sessions

Derive
security
requirements

Identify
security
compliance
requirements
(SOX, PCI DSS,
HIPAA, GLBA)

Perform
dynamic
application
security
testing

Environment
hardening

Performance
of penetration
testing

Incorporation
of security
in all phases
of the
life cycle

Performance
of continuous
assessment

Patch and
configuration
managment

Threat and log
monitoring

Incident

Secure
coding
trainings during
development
teams’
reviews

Use of
checklists
and
guidelines

Performance
of static
application
security
testing

Develop
design
guidelines
as per policy

Threat
modeling

Security
architecture
and
design
review

 Awareness sessions on application
security, threats and recent breaches
have to be conducted early in the life
cycle and on a regular basis to impart
the necessity of enforcing security in
the applications at all stages in the
life cycle.

ISACA JOURNAL VOL 3 4

Figure 3—Industry-specific Threats

Industry Threats

Automotive Human safety, unauthorized
control of self-driving
vehicles, global positioning
system (GPS) use

Health care Medical data theft,
manipulation of medical
devices (e.g., pacemaker,
blood pressure monitor,
defibrillators) that could
malfunction and pose a
threat to patients’ lives

Energy Power theft, unauthorized
metering data calibration,
grid shutdown

Consumer electronics Electronic appliance
malfunction that could lead
to threats on a consumer’s
life or unauthorized device
consumption

Source: S. Subramanian and B. Swaminathan. Reprinted with permission.

The controls that need to be built into the IoT
applications and the APIs are:

• Input validation—Handling input data from users,
apps and services

• Authentication—Identifying and verifying users
and traffic

• Authorization—Enforcing access control for all
requests to the application

• Configuration management—Securing
configuration data and metadata, console access

• Data security and privacy—Security of sensitive
and confidential data, such as protected health
information or other personally identifiable
information

• Session management—Safely initiating, handling
and terminating an application’s sessions

• Cryptography—Using strong encryption, hashing
and key exchange algorithms, digital certificates
and signatures

• Exception management—Safe handling of
application exceptions

Depending on the risk levels perceived for the
applications, the control gates can be derived.
Incremental and rapid deployments require
oversight throughout the development life cycle
until operation, especially in the case of enhancing
via DevOps, along with a well-defined acceptance
criterion from a security standpoint.

Awareness sessions on application security, threats
and recent breaches have to be conducted early in
the life cycle and on a regular basis to impart the
necessity of enforcing security in the applications at
all stages in the life cycle.

Design Phase

During the design phase, the architecture and
design of the IoT solution would be reviewed using
threat modeling techniques. Threat actors and
possible threat scenarios should be enumerated
for each of the IoT components. For example,
a threat scenario could be a possible data
integrity issue due to a lack of authentication
controls in the device. After the enumeration of
threats, countermeasures can be ranked and
recommended.

The standard approach for threat modeling using
the STRIDE and DREAD models is as follows:

• STRIDE—Threat categorization considering
spoofing, tampering, repudiation, information
disclosure, denial of service and elevation of
privileges

• DREAD—Threat ranking attributes considering
discoverability, reproducibility, exploitation,
affected users and damage potential

This method will suffice for reviewing the IoT
architecture, with an additional threat focus on
physical security of the devices. Common threats
applicable to physical security are device theft,
device cloning and unauthorized physical access.
The primary difference in the standard threat
model analysis and design reviews is the
application of knowledge of industry-specific
threats. Figure 3 shows some of these unique
industry threats.

ISACA JOURNAL VOL 35

should also be trained on embedded systems
programming, or embedded systems programmers
used to design the apps that specifically sit on the
devices/hardware. Such apps can either be
full-fledged or enhancements to existing apps.

In addition to the standard vulnerabilities and insecure
coding practices in the common programming
languages (e.g., Java, J2EE, PHP, .NET), hardware-
specific code and code governing the embedded
systems (Embedded C/C++) should be inspected
based on the secure coding standards mentioned
previously. Custom vulnerability signatures and test
cases can also be developed depending on the
nature of the logic implemented, APIs and libraries
that lie on the devices that govern the underlying
hardware, persistent and nonpersistent storage,
firmware life cycle, coding techniques, and defects
that reside in open sources.

Awareness should also be imparted to the
developers on the IoT attack and threat surfaces,
because the software they are expected to
develop is supposed to interact with real-world
objects. Their software integrated development
environments (IDEs) should be enabled with secure
code review plugins to do security checks during
the checkout time. An independent security analyst
could review the stable code for any of the security

• Auditing and logging—Recording all events with
required attributes for accountability

• Communication security—Securing traffic to
and from the application

• Availability—Safe handling of loads on the
applications

The output of design review and threat modeling
activities should enforce the incorporation of only
standard and authorized frameworks, modules,
APIs and design specifications, e.g., Spring
Security for access control or AES 256 and above
for encryption. This ensures a secure baseline is
built into the design, which will flow through the
SDLC, thus greatly reducing the number of security
defects in later phases. Unauthorized or unverified
frameworks or APIs that are pulled from public
repositories should be avoided. Should there be a
business need for the usage of such modules, the
following steps should be completed:

• Enumerate if there are any known vulnerabilities
and exploits associated with the codebase.

• Ensure only the updated version is used.

• Thoroughly analyze the code and fix the
vulnerabilities (development phase).

Security design solutions for the perceived and
standard threats have to be carefully weighed and
provided based on multiple factors, e.g., use cases
involved, input and output, application type and
technology, and device specifications. Educating
the application architects and developers on
secure design guidelines and incorporating these
guidelines into the design will also greatly improve
the security baseline.

Development Phase

During the development phase, whether it is Agile
or waterfall development, secure coding training
based on the Open Web Application Security
Project (OWASP) Top 103 or Top 9,4 SANS Top
25,5 or CERT principles6 should be imparted to all
the developers and has to be enforced at regular
intervals to stay abreast of the latest developments
against new attacks and threats. Developers

 Continuous
integration of
security best
practices, tools and
assessments to aid in
continuous delivery
must be practiced
and implemented
with automation.

ISACA JOURNAL VOL 3 6

security assessments to be performed can be
decided accordingly. Some typical assessments
that have to be performed include:

• Vulnerability assessment or dynamic
application security testing (DAST)—Ensure
the input and traffic to/from the application is
thoroughly tested to enumerate the vulnerabilities
that are prevalent as dictated by standards such
as OWASP (Web Top 10,7 IoT Top 10,8 Mobile
Top 10,9 thick client), Web Application Security
Consortium (WASC)10 and SANS Top 25.11 These
have to be performed on all of the following
applications used in the IoT environment:
– Web apps
– Mobile apps
– Device apps
– Thick clients
– �Web services and APIs (plain and

representational state transfer)

• Reverse engineering and debugging—Reverse
the applications from their binaries; interpret any
hidden logic, controls and secrets; and repack
to their original state after bypassing and
altering the hidden logic. This will be more
applicable to mobile apps and device apps,
where much of the application logic and controls
are housed.

flaws mentioned previously, unauthorized access to
secrets and secret-key session issues.

For rapid and incremental deployments, exercising
formal control gates (as in traditional waterfall
models) might not be practically feasible. Continuous
integration of security best practices, tools and
assessments to aid in continuous delivery must
be practiced and implemented with automation. In
other words, continuous development is and should
always be accompanied by continuous automated
assessments to ensure that all software and API
changes are security-vetted and only a signed-off
build is propagated to the next phase. Failed builds
should be automatically fed back for remediating
vulnerabilities.

Assessing a software or API can be more effectively
achieved when the source code is available, as it
can be directly inspected for vulnerabilities. When
blackbox products, whose design and source
code are not available, are used only a standard
vulnerability assessment can be performed on the
apps or APIs in the test phase. Nonstandard open
source software and APIs that are leveraged from
public repositories should be given due attention, as
specified in the design phase. Since such software
and APIs might not have undergone a secure
development, they should be thoroughly examined
for known and custom vulnerabilities. This
examination should use tools that are specialized in
identifying vulnerabilities in open-source software.

While the requirements serve as user stories (in
Agile modes), developers can leverage the plugins
and tools that integrate with the build servers (e.g.,
Jenkins, Bamboo) and conduct assessments on
the fly based on check-ins. Test cases and the
vulnerabilities list should be continuously revised
and fed back to the cycle, and the cycle should
move to the next phases based on the acceptance
criteria. The same mode of continuous delivery
enhanced via continuous assessments can be
leveraged for the testing phase as well.

Testing Phase

Depending on the type of IoT application and the
APIs in place, the necessity for and the type of

 Assessing a
software or API can
be more effectively
achieved when
the source code
is available, as it
can be directly
inspected for
vulnerabilities.

ISACA JOURNAL VOL 37

when the applications are signed off by functionality
and performance testing. More logical and business
use cases must be targeted manually in parallel.
The standard approach for security testing is
detailed in figure 4.

The test environment should be scalable enough to
account for the data generation and aggregation to
be fed to and consumed by these applications to
mimic the real world. The live environment where the
apps and devices will be deployed is widespread and
will receive data from many endpoints.

It is worth noting that security testing for an
IoT environment does not stop just with the
applications. The scope is as broad as the number
of components involved, e.g., sensors, actuators,
gateways and the underlying infrastructure. Key
target areas should include:

• Smart devices—Device disassembly and review,
memory extraction, attacks on buses and fuzzing
through physical ports

• Firmware—Static and dynamic analysis,
reversing, malicious firmware injection and signing

• Communication—Traffic analysis, protocol
decoding and fuzzing, packet replays, and
cryptographic attacks

As with every SDLC phase, the testing phase
associated with the applications should consist of
the assessment activities pertaining to the physical
endpoints (e.g., sensors and nodes).

Physical risk could range between any extremes
depending on the use cases involved. Some
sample abuse cases are:

• Bypassing device enrollment and registration

• Cloning and stealing devices

• Simulating physical movements to bypass
sensors and actuators

• Abusing protocols, e.g., ZigBee, Z-wave,
6LoWPAN

Depending on the use cases or the functional
flows perceived for each device and application,
the vulnerability test cases should be designed
as appropriate. The test methodology should
consider all use cases pertaining to the complete
IoT environment, and every such use case should
have one or more misuse case (security test case)
associated with it.

Wherever possible, vulnerability test cases and test
scripts have to be initiated via automation, as and

Figure 4—Security Testing Approach

Source: S. Subramanian and B. Swaminathan. Reprinted with permission.

Setup of
test environent Test execution

Integration With Application Release Cycle

Reporting

Study of devices
and environment

Identification of
relevant hacks

Application
use-case analysis

Preparation of
assessment
methodology

Identification of
applicable tools

Derivation of test
cases (automation

and manual)

ISACA JOURNAL VOL 3 8

Just as APIs and applications undergo a secure
SDLC, manufacturers should ensure that these
devices are subjected to secure development life
cycle from device circuit designing, assembling and
setup, to rolling out to customers.

Unwanted logical and physical ports should be
turned off in such devices and servers, and physical
security procedures should be tightly employed to
detect and prevent against attacks such as device/
sensor theft, tampering and unauthorized access.
All such attempts should be monitored, alerted,
logged and defended effectively.

For leveraging cloud-based services (especially in
the case of Software as a Service), where the apps
are exposed as services and APIs, customers should
work with the service providers for obtaining the
assessment and audit results of the apps and the
infrastructure being relied upon to provide assurance.

Standard vulnerability assessment and penetration
testing have to be conducted on all the IoT
environment components, especially the servers
hosting the applications and APIs to identify
and mitigate the vulnerabilities pertaining to the
operating system and platform that could lead to a
compromise. Real-world penetration testing should
also focus on serving load traffic to the devices and
the applications.

Operations and Steady State

Early in the inception phases, a centralized
management and monitoring solution is imperative
to track the IoT environment and its components
(applications, devices, sensors).

Automation of vulnerability, patch and configuration
management must be exercised. Every single
application and node must be subjected to
continuous monitoring to aid in automated threat
and attack detection and response, which will fuel
additional confidence in security assurance. In
addition, continuous vulnerability assessments,
penetration testing and security maintenance have
to be carried out to cope with the ever-increasing
attacks and threats, and defended accordingly.

• Infrastructure (deployment phase)—
Vulnerability assessment, penetration testing
and hardening

Deployment Phase

While a majority of off-device apps adhere to the
common environment hardening guidelines and
are subjected to penetration testing, on-device
apps require special considerations for a secure
deployment.

Device manufacturers should comply with security
guidelines mandated by the respective industry
consortium groups (e.g., Institute of Electrical
and Electronics Engineers [IEEE] for energy, US
Food and Drug Administration [FDA] for medical
devices, Society of Automotive Engineers [SAE]
for automotive devices, Consumer Electronics
Association [CEA] for consumer electronic
devices). Common devices prevalent in the
industries are:

• �Energy—Smart grid, smart meters, relays,
programmable logic controllers (PLCs)

• �Medical devices—Smart pacemakers, defibrillators

• Automotive—Smart or driverless vehicles

• Consumer electronics—Smart home appliances

 Early in the
inception phases,
a centralized
management and
monitoring solution
is imperative
to track the IoT
environment and its
components.

ISACA JOURNAL VOL 39

addressed before moving to the next phase. The
mobile applications were also reverse-engineered
to disassemble and debug them to enumerate
vulnerabilities pertaining to data storage security,
access control and sensitive secrets.

The gateway and cloud servers holding the
application tiers underwent network penetration
testing, and configuration hardening was conducted
on the gateway and cloud servers hosting the
application tiers to identify and prevent the
vulnerabilities in the platforms and operating systems.

In addition, physical penetration testing was also
performed, e.g., tricking the sensors, cloning or
impersonating sensors, and tampering with the
hardware. Abuse cases were designed based on
the business rules laid out by the customer and
executed as appropriate in the testing phase.

The following are the number of security defects
enumerated in the respective SDLC stages:

• Design: 41

• Development: 26

• Test: 17

• Deployment: 11

Business Use Case
A typical vehicle parking system consisting of
device and upstream applications underwent
security assurance via secure SDLC. The high-level
IoT architecture is depicted in figure 5.

The device sensors identify the availability of a
parking spot by detecting the electromagnetic field
created by a vehicle’s presence or absence. These
devices feed the parking data to a local gateway
through the data bus wired from them, and then the
gateway communicates with the customer’s cloud
applications. From the cloud, users can pull, query
and reserve the parking spot by using mobile apps.
Applications that were subjected to security
assurance are:

1. Device applications—D1, D2, D3, D4

2. �Node.js-based thick clients—Managing the
electromagnetic sensors attached to them

3. Gateway application—Java middleware logic

4. Cloud application—Java/J2EE web and mobile

5. Mobile apps—Android and iOS apps

All of the aforementioned applications were
subjected to secure SDLC, and vulnerabilities
identified in each stage in the life cycle were

Figure 5—Smart Parking System

Source: S. Subramanian and B. Swaminathan. Reprinted with permission.

Local Gateway Cloud Application
and Dashboard

Wired

Wi-Fi, 3G, 4G

GSM

ISACA JOURNAL VOL 3 10

frameworks, standards and APIs should be used, and
due care exercised on open-source components. To
counter the most recent vulnerabilities and threats,
continuous assessments, threat monitoring and
security patching must be conducted once the
IoT devices, applications and APIs are exposed to
production. Having security embedded in the IoT
development cycle ensures that known security
issues are fixed and new ones prevented with the
most effective measures, thus providing security
assurance for end users.

Endnotes

	 1	� Dark Reading, “IoT Village at DEF CON
24 Uncovers Extensive Security Flaws in
Connected Devices,” press release,
16 September 2016, www.darkreading.com/
attacks-breaches/iot-village-at-def-con-
24-uncovers-extensive-security-flaws-in-
connected-devices/d/d-id/1326928

	 2	� Jones, C.; Software Quality Metrics: Three
Harmful Metrics and Two Helpful Metrics,
Project Performance International, 6 June
2012, www.ppi-int.com/systems-engineering/
free%20resources/Software%20Quality%20
Metrics%20Capers%20Jones%20120607.pdf

The following are typical data for cost per defect
ranges12 (in US dollars):

• Requirements: $250

• Design: $500

• �Coding, testing and implementation: $1,250

• Post-release: $5,000

Total cost incurred in defect fixing: (41 flaws*$250)
+([26 flaws+17 flaws+11 flaws]*$1,250) = $77,750.

Had the apps not been subjected to secure SDLC, all
the defects would have propagated to the final build
and would have accumulated in the production:
• �Total number of defects: 41+26+17+11 = 95

• �Total cost that would have been incurred for post-
production fixes: 95 defects*$5,000 = $475,000

Total cost savings reached: $475,000 – $77,750 =
$397,250

In other words, the cost that would have been
incurred for fixing defects postproduction would be
approximately five times the cost incurred for fixing
the defects in individual SDLC phases. Note that
the previous amounts are an approximate indicator
on the costs involved and not the actual figures.

Conclusion

Security assurance for IoT applications and APIs
has to be embedded throughout every stage of
the SDLC and must be continuous. It is critical
to maintain a proper inventory and configuration
of all the application components building up the
IoT environment. Security oversight or verification
must be part of the requirements stage. Proactive
measures such as training sessions and usage
of security standards, guidelines and checklists
have to be mandated in all applicable stages, and
validation measures are achieved by performing
reviews and assessments in all stages.

Security assessment tools should be integrated
into the development and quality assurance cycles
to trigger assessments on the fly and, wherever
possible, employ automation. Only authorized

ISACA JOURNAL VOL 311

	 7	� Op cit, OWASP Top 10 2013-Top 10
	 8	 �Open Web Application Security Project,

OWASP Internet of Things Project,
https://www.owasp.org/index.php/OWASP_
Internet_of_Things_Project#
tab=IoT_Vulnerabilities

	 9	� Open Web Application Security Project, Mobile
Top 10 2016-Top 10, https://www.owasp.org/
index.php/Mobile_Top_10_2016-Top_10

	10	� Web Application Security Consortium, “The
WASC Threat Classification v2.0,” Threat
Classification Wiki, http://projects.webappsec.
org/w/page/13246978/Threat%20Classification

	11	� Op cit, Martin
	12	 Op cit, Jones

	 3	� Open Web Application Security Project, Top 10
2013-Top 10, https://www.owasp.org/index.
php/Top_10_2013-Top_10

	 4	� Open Web Application Security Project,
The OWASP Code Review Top 9,
https://www.owasp.org/index.php/The_Owasp_
Code_Review_Top_9

	 5	� Martin, B.; M. Brown; A. Paller; D. Kirby; 2011
CWE/SANS Top 25 Most Dangerous Software
Errors, The MITRE Corporation, 13 September
2011, http://cwe.mitre.org/top25/

	 6	� Confluence, SEI CERT Coding Standards,
Software Engineering Institute at Carnegie
Mellon University, Pittsburgh, Pennsylvania,
USA, https://www.securecoding.cert.
org/confluence/display/seccode/
SEI+CERT+Coding+Standards

