
ISACA JOURNAL VOL 3 1

featurefeature

Installed mobile applications, if not protected
appropriately, can be reverse engineered to get
their source code, which is in human-readable form.
Platforms such as iOS and Android—the two most
popular mobile platforms today—are not immune to
the threat of reverse engineering. A few easy steps
and widely available (often free) tools make it easy
for an attacker to:

• Extract the installed application from the mobile
device

• Analyze or reverse engineer the code to find vital
information, e.g., business logic, the application
programming interface (API) used and embedded
internal URLs

• Modify the code to change application behavior

• Inject malicious code

In today’s age of bring your own device (BYOD), the
smartphone is one of the preferred mobile devices
to access enterprise information. Software is a key
component in any information technology asset.
Smart devices either are embedded with application
software or allow users to install software on the
devices to add functions that accomplish intended
objectives. Hence, applications are vital to mobile
devices. Securing these applications from security
vulnerabilities and risk is fundamental.1

This article focuses on secure development
practices in mobile applications development
and suggests a few open-source security tools
to perform an application security assessment to
strengthen mobile applications.

Web Application Security Issues
Lead to Enterprise Breaches

Major information security breaches have occurred
in the last few years. Security researchers took
a close look at the underlying reasons for some
of these breaches, and their studies reveal that
the security of a web application is of paramount
importance to the enterprise perimeter and
gateway-level security.2, 3, 4, 5, 6, 7, 8

An insecure web application can compromise the
best enterprise security arrangements and can help
adversaries steal data and gain a foothold into the
enterprise’s internal network.

Mobile Application Security Issues

Security issues are no different in the case of
mobile applications—wherein the application is
downloaded from the Internet (e.g., Apple Store
or Google Play Store) and installed in the user’s
device. Similar to web applications that are
exposed on the Internet, mobile applications that
are installed in BYOD devices are entry points to the
enterprise network.

Sakthivel Rajendran, CISA, CRISC, CISM, CEH, GMOB
Is an information security manager in India and works with a major global
health care company. He has more than a decade of experience in IT
security. His area of focus is security of emerging technologies. He can be
reached at sakthiindian@gmail.com.

Safeguarding Mobile Applications With
Secure Development Life Cycle Approach

Do you have
something
to say about
this article?
Visit the Journal
pages of the ISACA®
website (www.isaca.
org/journal), find the
article and click on
the Comments link to
share your thoughts.

ISACA JOURNAL VOL 32

• Leakage of sensitive information through system
logs

• Hard-coded credentials in the code

• Using non-Secure Socket Layer (SSL) (HTTP)
protocol for transmitting sensitive information
between the remote server and the user device

Recommendations from the researchers to improve
the security of mobile applications include:13

• Ensure that all connections between the mobile
applications and the back-end servers are
performed using SSL. SSL certificate check is
enforced by the client application to safeguard
against interception and MitM.

• Protect the sensitive data that are stored in the
device (client side) with encryption.

• Use code obfuscation and anti-debugging tricks
to deter attackers from reverse engineering the
application binary.

• Enable the protections that are provided by the
mobile operating platform, such as:
– Automatic reference counting (ARC)
– Position-independent executable (PIE)
– Stack protection in iOS platform
– Using the latest software development kit (SDK)
– Disabling the debugging feature in the

compiled binary
– Permission hardening for Android-based

applications

Building Security in Development

Performing application security assessments and
incorporating security in the application just prior to
the release of the software is not an ideal approach.
Remediating the security vulnerabilities in the
later stages of the software development life cycle
(SDLC) is time consuming and very costly.

Secure development life cycle aims to incorporate
security in all phases of software development,
from requirement gathering to testing, release and
maintenance (figure 1).14, 15

The following sections aim to provide guidance to
application development and security personnel for
embedding specific information security activities in
each phase of the SDLC.

Reverse engineering mobile applications is a
security concern that enterprises should consider.
Code obfuscation is a well-known technique that
makes reverse engineering of a mobile application
difficult,9 but this technique is often ignored by
the development community. Mobile applications
exhibit the following security weaknesses:10

• Lack of privacy considerations

• Lack of binary protection

• Insecure data storage

• Transport security

• Weak server-side controls

Research by two security experts representing
different security firms reveals that the mobile
banking applications of top influential banks
around the world have many common security
vulnerabilities.11, 12 These researchers performed
their tests on the mobile application (client side)
and excluded any server-side testing (back end).
The client side represents only a small portion of
the attack surface of mobile banking, because the
majority of processing happens in the back end.
The security issues that the researchers revealed
are not business logic or application-specific issues.
The issues are weaknesses in the application
development, i.e., security tasks that developers
should be doing, but they are not doing.

Mobile applications that were tested during the
research were leaking information through insecure
coding. For example, these applications were
vulnerable to:

• Man-in-the-middle (MitM) attacks

• Cross-site scripting (XSS) attacks

 Remediating the security
vulnerabilities in the later stages
of the software development life
cycle is time consuming and
very costly.

ISACA JOURNAL VOL 3 3

issues, because code-level issues can be identified
with static analysis or manual code review.
Furthermore, automated tools cannot identify
design inconsistencies unless efforts are made to
do a threat-model and architecture review.16 Strict
adherence to secure design principles greatly
improves security.

Recognizing the importance of design in the security
of applications, the Institute of Electrical and
Electronics Engineers (IEEE) launched the Center for
Secure Design (CSD) initiative. CSD identified the top
10 design flaws and ways to avoid them.17 The CSD
recommendation can provide valuable guidance to
consider in the design of an application.

Performing threat modeling and architecture risk
analysis of the design gives a measure of how likely it
is that the software will be attacked and the extent of
damage that an attack could cause. Start the analysis
by building a high-level overview of the proposed
system; then, analyze the design from an attacker’s
perspective, i.e., find ways to exploit the application.

Coding

During the coding phase, business/customer/
product requirements are converted into an
application. The input for this phase comes from the

Requirement Gathering

Embedding security in application development
begins at the requirement gathering phase. Apart
from business functionality requirements of the
software, determine the:

1. User-specific security requirements expected in
the application. This can include confidentiality,
integrity, availability and authentication.

2. Importance of the data handled by the application
and security requirements to protect the data

3. Compliance and regulatory mandates that are
applicable for the users, the region where the
application will be used and the information that
is handled by the application

4. Use and misuse cases from a security perspective

5. Requirement traceability matrix to map
requirements with security risk

Design

In the application design phase, the functional
requirements are converted to architecture. It is
important to embed security controls for application
security in the design phase. Constructing a
secure design minimizes the majority of security

Figure 1—Embedding Security in Mobile Application Development

Source: S. Rajendran. Reprinted with permission.

Security in Development

Determine Application Risk Level
Incorporate security requirements

Minimize Security Flaws
Threat model
Architecture review analysis
Static analysis

Security Assurance
Dynamic analysis

Security Monitoring
Vulnerability advisory monitoring

Requirement
Gathering

Design
and Coding

Test and
Release

Maintenance

ISACA JOURNAL VOL 34

vulnerabilities found in the libraries. Examples
include the OpenSSL flaw that led to the Heartbleed
vulnerability.22

It is recommended to create an inventory of open-
source and third-party libraries that are used in
the application that is being developed and retain
the inventory as part of the development artifacts.
Because open source comes from multiple parties
and is introduced in the application code by
developers from in-house and/or outsourced partners,
it is essential that the inventory tracks the open-source
component in the code and determines if these
components are affected by known vulnerabilities.

A benefit of open-source inventory is that when
any security incident takes place involving these
libraries, remediation can be very quick, especially
when the enterprise has several applications in
its portfolio. A lack of information on open-source
components that are used in applications can make
it difficult to initiate remediation activities.23

Another advantage of open-source inventory is
proactive monitoring of vulnerabilities in open-
source components by referring to the inventory
sheet (figure 2) and taking appropriate corrective
action when something undesirable is forthcoming.
Heartbleed led to a crisis situation for those who
used OpenSSL cryptolibraries in their mobile
applications, and updating to the current version
was a challenge.24, 25 In circumstances such as this,
having an inventory sheet is helpful. The personnel
who are responsible for support and maintenance
know the details of applications and can use
the inventory sheet to find where the vulnerable
component is in use and then plan for remediation.

It is also worthwhile to vet the open-source and
third-party libraries. The objective of vetting them is to
minimize vulnerabilities, e.g., backdoors embedded
in them or other security issues. Securing third-
party open-source code can be approached in two
ways: by embedding administrative controls and by
embedding technical controls throughout the SDLC.

The first approach consists of administrative
controls, such as policies and procedures. This
approach can include:

• Developer awareness training to educate how
developers inadvertently inherit security risk from

previous phases in SDLC (requirement gathering
and design). Developers convert the design
documents into functioning software. Incorrect
writing of a code results in software errors. Coding
errors can be reduced greatly when secure coding
guidelines are applied in application development.

Coding guidelines can be either of the following:

• Generic, which are applied in all development
environments irrespective of the platform chosen
to construct an application. The Open Web
Application Security Project (OWASP) Mobile
Security Project18 and the European Union Agency
for Network and Information Security (ENISA)
secure mobile application guidelines19 are
generic guidelines.

• Platform-specific coding guidelines related to a
development platform, e.g., Android20 or iOS21

Use of Third-party Code
Another important consideration during coding
is the use of development frameworks and third-
party libraries, including open-source components.
Today, many applications are assembled out of
multiple sets of libraries, most of which are open
source, allowing the developer to focus on the core
application functions while relying on third-party
code to provide supporting capabilities. Although
this is beneficial to develop the functionality quickly,
some security breaches have happened due to

 Constructing
a secure design
minimizes the
majority of security
issues, because
code-level issues
can be identified
with static analysis
or manual code
review.

Enjoying
this article?

• Learn more about,
discuss and
collaborate on
mobile computing
in the Knowledge
Center.
www.isaca.org/
mobile-computing

ISACA JOURNAL VOL 3 5

Static Application Security Testing
Running static analysis on the source code early in
the life cycle helps to fix code-level bugs before the
application is released for general use. Static analysis
finds incorrect coding that can potentially cause
security risk. Analysis is performed without actually
executing the program. The entire source code or
binary is covered in this kind of analysis. It can be
built in the development process and performed early
in the software development life cycle.

Developers can be empowered to perform static
analysis of their code and fix incorrect coding
regularly. Integrating static analysis with continuous
integration servers, e.g., Jenkins, minimizes the
need for manual intervention, reduces dependency
on the security team and fixes bugs that might turn
into security vulnerabilities before they become
unmanageable. Security tools, such as Androwarn,
QARK, FindBugs and Infer, can be used for this
analysis as well.

Developer Training
An IT organization striving to deliver secure
applications (including mobile) must engage
its developers and train them in secure coding
practices. The focus must include delivering

open-source components to their application
when the third-party code is not validated

• Audit of any open-source software in use,
especially in high-priority applications

• Creation and maintenance of a list of approved/
white-listed open-source code and restricted
usage of unapproved software. However, white-
listing may not be helpful when the volume of
applications that an enterprise releases is high
and when there is an increased need for the use
of third-party code. In such situations, combining
a white-listing approach with technical controls
can help in achieving a fine balance.

The second approach consists of technical controls
and performing source-code analysis and run-time
analysis on the third-party code using automated
tools. All third-party code that is used in the
application should be subjected to these analyses
to make sure that the potential security risk is
identified and managed appropriately.

Freely available tools, such as Androwarn,26
LinkedIn Quick Android Review Kit (QARK),27
FindBugs28 and Facebook Infer29 can be used for
analyzing the code.

Figure 2—Sample Inventory Template for Third-party and Open-source Code

 Functional
module within the
application where
third-party library

is used
Third-party

library name

Third-party code
version and patch

level in use
Third-party code
vendor/supplier

From where
the third-party

code component
obtained

Most recent
component version

and release date
(security updates)

Validation of
third-party code
for existence of
vulnerabilities

(indicate reference
to verification
information or

defect tracking, if
open items)

Source: S. Rajendran. Reprinted with permission.

ISACA JOURNAL VOL 36

a testing environment to effectively carry
out the assessment. However, the security
testing environment for mobile varies because
the assessment involves reviewing multiple
components, including how the application behaves
when installed on the mobile device.

Setting Up a Mobile Testing Lab
A mobile testing lab requires the following
essentials:

• A network connection. This environment must be
isolated from the corporate or production network.
Creating a Wi-Fi hotspot using a 3G/4G data card is
an option. It is important to remember that both the
analysis laptop and the device in which the mobile
application is installed need to connect to the same
network for some of the tests.

• A Mac or Windows laptop loaded with open-
source security software

• A jailbroken32 device for iOS application security
testing (iPhone, iPod or iPad)

• For Android devices, an Android SDK and Eclipse
integrated development environment (IDE) to set
up an emulator33

Minimum Baseline Security Test Cases
Four major components of the mobile application
environment need to be covered in the dynamic
analysis:

• Device where the mobile application is installed

• Application

• Network communication between the application
and enterprise server

• Data handled in the application

When establishing mobile application security
testing capability, it may not be possible to focus
on everything. The best approach is to start small
and iterate continuously to mature the capability,
incorporating lessons learned into the process along
the way. The OWASP “Top 10 Mobile Risks” can be
a good starting point when building the test cases
for mobile security testing. Security professionals
who are involved in application security voluntarily
contribute to OWASP, which fairly represents the
major security issues with mobile applications.

a security risk–free application apart from the
functionalities and features.

For example, Damn Vulnerable iOS App (DVIA),30
as the name suggests, is a vulnerable mobile
application. The main objective of the application is
to teach developers and security enthusiasts about
vulnerabilities in iOS mobile applications, based
on the OWASP “Top 10 Mobile Risks.”31 Similarly,
OWASP GoatDroid provides a training environment
for Android developers and testers.

Testing

In the testing phase, it is important to perform security
testing along with quality assurance (QA) tests to
continuously integrate security into development. QA
assures the quality of the application to deliver the
needed business functionality. Security tests give an
assurance that the application is securely processing
the business information.

Dynamic Application Security Testing (DAST) or
run-time analysis is appropriate in this phase of
the SDLC. Dynamic analysis is performed against
a running instance of a program. This test most
accurately mimics how a malicious user can attack
the application.

Similar to traditional web application security
testing, mobile application assessment requires

 In the testing
phase, it is important
to perform security
testing along with
quality assurance
(QA) tests to
continuously
integrate security
into development.

ISACA JOURNAL VOL 3 7

Figures 4 and 5 break down security test objectives
into test cases and map them to security assessment
tools for iOS and Android mobile platforms.

Maintenance

Application security is an ongoing task; it continues
to be important even when the application is
released for public use. Proactively monitoring the
security vulnerabilities in platform system software
and embedded components and then initiating
incident response and remediation, as appropriate,
are crucial.

Identifying security vulnerabilities using reputable
sources for obtaining security information is a
continuous cycle. Sources such as software vendor
websites, the US National Institute of Standards
and Technology (NIST) National Vulnerability
Database (NVD), and the MITRE Corporation
Common Vulnerabilities and Exposures (CVE) are
reliable for vulnerability research.

Inventory of all third-party frameworks/APIs that
are used in the mobile application is helpful to
handle security patches. Whenever any vulnerability

Alternatively, mobile application security test
cases can be built based on the five security
issues highlighted in the Hewlett-Packard “Mobile
Application Security Study” report.34 The security
issues identified in the study are an abridged
version of the OWASP Top 10, because study
results are mapped with OWASP top issues.

Previous security assessment results of applications
developed/used in the enterprise are other valuable
resources to consult when building the test cases.

Attempts to establish a minimum baseline of security
test cases can result in identifying high-level security
objectives. These objectives are unique and relevant
to mobile application security, as shown in figure 3.

The next step is to divide the security objectives
into actionable security test cases. Mapping the
security test cases with security assessment tools
is another subactivity in this effort. Commercial
security tools for mobile application assessment
may not cover all of the test scenarios. Performing
manual testing with some of the freely available
open-source tools can give reasonable coverage to
identify security risk.

Figure 3—Security Objectives Relevant to Mobile Application Security

Security Objective Coverage Purpose

Insecure data storage Device To find storage of credentials in property list files or SQLite database

Run-time manipulation Application To determine if the application is susceptible to modification of input
to be interpreted as a code instruction

File system analysis Application To analyze if any sensitive application data are stored insecurely in
the device

Analyzing network traffic Network To determine whether the application trusts any SSL certificate
presented while connecting with enterprise IT infrastructure,
resulting in MitM attacks

Insecure or broken cryptography Application To find out whether a weak or flawed encryption algorithm is used to
secure the information

Information disclosure Application To find information leakage via logging, sending analytics data to
external providers

Improper session handling Application To find out whether session timeout is set in the application

Binary protection Data To determine whether the mobile application binary is secure from
reverse engineering risk

Privacy violations Data To find out whether the application is using more permission than
necessary to collect and transmit user personal data elsewhere

Authentication Network,
application

To determine whether authentication is performed on the server side
rather than on the client side (device)

Source: S. Rajendran. Reprinted with permission.

ISACA JOURNAL VOL 38

Figure 4—iOS Security Test Cases

ID Test Name Security Tools to Use

IOS-01
IOS-02
IOS-03
IOS-04

Storage of credentials in property list file
Storage of credentials in SQLite file
Failure to use keychain to store credentials
Storage of sensitive application data on file system

PuTTY, WinSCP, iExplorer, Plist
Editor

IOS-05
IOS-06
IOS-07

Client trusting any SSL certificate presented—expired or invalid
Application allows trivial MitM attack
Connect to HTTPS once and fall back

Burp Proxy, Fiddler

IOS-08 Application logging sensitive application data iPhone Configuration Utility

IOS-09 Application is storing its image in a public folder rather than application sandbox
(application backgrounding)

PuTTY, WinSCP, iExplorer

IOS-10
IOS-11

Analytics data sent to third parties
Authentication requests are performed on server side

Burp Proxy, Fiddler

IOS-12 Persistent authentication, if implemented, does not store user password on the
device

WinSCP, Python,
BinaryCookieReader.py

IOS-13 Hard code of cryptokeys in any construct (plain text, property files, compiled
binaries)

IDA, Clutch, Class-dump-z

IOS-14 Use of insecure and/or deprecated algorithms

IOS-15 Use of custom encryption protocols

IOS-16 Invalidate sessions on the back end Burp Proxy, Introspy

IOS-17 Reset cookies during authentication state changes

IOS-18 Adequate time-out protection on the back-end components

IOS-19 Code obfuscation IDA, Clutch, Class-dump-z

IOS-20 Remove debugging statements and development information iRET

IOS-21 Implementation of address space layout randomization (ASLR) PIE and automatic
reference counting

iRET

IOS-22 Privacy violations—access to location, contacts, address book, photos Snoop-it, iRET

IOS-23 Access to private data Snoop-it, iRET

IOS-24 Run-time analysis GDB, IDA, Hopper, ClutchMod
Source: S. Rajendran. Reprinted with permission.

Conclusion

Mobile and web applications dealing with sensitive,
private or other at-risk information require a secure
development life cycle. Applications without
security considerations may present an unexpected
vulnerability to privacy. To address application
security issues, developers are encouraged to
understand the potential risk for each business
function, code change and use of third-party
frameworks and APIs, while security teams can
help to improve application security through
training, periodic scanning, ongoing vulnerability
assessments and proactive engagement with
developers. Incorporating security in all phases
of SDLC instead of incorporating security just

becomes public knowledge, a corresponding
security update must be done for the mobile
applications that are using these vulnerable third-
party APIs/frameworks.

 Application security is an ongoing
task; it continues to be important
even when the application is
released for public use.

ISACA JOURNAL VOL 3 9

 3 TrustedSec, “CHS Hacked via Heartbleed
Vulnerability,” TrustedSec Update,
19 August 2014, www.trustedsec.com/
august-2014/chs-hacked-heartbleed-
exclusive-trustedsec/

 4 Mumsnet Limited, “The Heartbleed Security
Breed—And What To Do,” mumsnet,
www.mumsnet.com/info/the-heartbleed-
security-breach-to-do

 5 Paganini, P.; “Vulnerabilities in Alibaba
Threatens Security of Million Users,”
Security Affairs, 11 December 2014, http://
securityaffairs.co/wordpress/31028/hacking/
vulnerabilities-in-alibaba.html

 6 Mai-Duc, C.; “Alibaba Security Flaws Exposed
Data on Millions of Users, Analysts Say,” The
Los Angeles Times, 10 December 2014,
www.latimes.com/business/technology/la-
fi-tn-alibaba-security-breach-20141210
story.html

prior to release of the software not only benefits
the organization from an economic and efficiency
perspective, it also ensures that the business
services are enabled securely.

Author’s Note

The views expressed in this article are the author’s
and in no way represent the stance of his employer.

Endnotes

 1 2014 Research Into Internet Systems LLC,
“Top 10 Mobile Security Risks,” Decompiling
Android, 2014, www.decompilingandroid.com/
mobile-app-security/top-10-mobile-security-
risks/?_sm_au_=iHVjTnqfJSv0F6Nj

 2 Tung, L.; “Hackers Access 800,000 Orange
Customers’ Data,” ZDNet, 3 February 2014,
www.zdnet.com/article/hackers-access-
800000-orange-customers-data/

Figure 5—Android Security Test Cases

ID Test Name Security Tools to Use

AN-01
AN-02
AN-03
AN-04

Storage of credentials in device
Storage of credentials in SQLite file
Failure to use keystore to store credentials
Storage of sensitive application data on file system

AXMLPRINTER,
SQliteSpy,
Cookies Manager+

AN-05
AN-06
AN-07

Client trusting any SSL certificate presented—expired or invalid
App allows trivial MitM attack
Connect to HTTPS once and fall back

Burp Proxy, Fiddler

AN-08 Application is logging sensitive application data Burp Proxy

AN-09
AN-10

Analytics data sent to third parties
Authentication requests are performed on the server side

Burp Proxy, Fiddler,
secure code review

AN-11 Persistent authentication, if implemented, does not store user password on the
device

Manually review

AN-12 Hardcode of cryptokeys in any construct (plain text, property files, compiled binaries) Dex2Jar, JD-GUI,
FindBugs, AndrowarnAN-13 Use of insecure and/or deprecated algorithms

AN-14 Use of custom encryption protocols

AN-15 Invalidate sessions on the back end Burp Proxy, Introspy

AN-16 Reset cookies during authentication state changes

AN-17 Adequate time-out protection on the back-end components

AN-18 Code obfuscation Dex2Jar, JD-GUI,
Proguard

AN-19 Remove debugging statements and development information Dex2Jar, JD-GUI,

AN-20 Privacy violations—access to location, contacts, address book, photos DroidBox, Drozer

AN-21 Access to private data

AN-22 Run-time analysis Drozer
Source: S. Rajendran. Reprinted with permission.

ISACA JOURNAL VOL 310

Development Guidelines,” 25 November 2011,
www.enisa.europa.eu/activities/Resilience-
and-CIIP/critical-applications/smartphone-
security-1/smartphone-secure-development-
guidelines

 20 Android, “Security Tips,” http://developer.
android.com/training/articles/security-tips.html

 21 Apple Inc., “Introduction to Secure
Coding Guide,” Mac Developer Library,
https://developer.apple.com/library/mac/
documentation/Security/Conceptual/
SecureCodingGuide/Introduction.html

 22 For more information, see http://heartbleed.com/
 23 BlackDuck, “Future of Open Source Survey,”

2016, https://info.blackducksoftware.com/
rs/872-OLS-526/images/FOOS_Infographic_
Security.pdf

 24 Helppi, V.; “What Heartbleed Bug Means to
App Developers? Testdroid Has You Covered,”
bitbar.com, 10 April 2014, http://bitbar.
com/what-heartbleed-bug-means-to-app-
developers-testdroid-has-you-covered/

 25 Acharya, S.; “Heartbleed Bug: How to Protect
Android Devices,” International Business Times,
12 April 2014, www.ibtimes.co.uk/heartbleed-
bug-how-protect-android-devices-1444508

 26 GItHub, “Androwarn,” https://github.com/
maaaaz/androwarn

 27 GItHub, “Qark,” https://github.com/linkedin/
qark

 28 GItHub, “findbugs,” https://github.com/
findbugs/findbugs

 29 GItHub, “Infer,” https://github.com/facebook/
infer

 30 Damn Vulnerable iOS Application (DVIA),
http://damnvulnerableiosapp.com/

 31 Op cit, OWASP
 32 Gianchandani, P.; “iOS Application Security

Part 1—Setting Up a Mobile Pentesting
Platform,” 16 June 2013, http://
highaltitudehacks.com/2013/06/16/ios-
application-security-part-1-setting-up-a-
mobile-pentesting-platform/

 33 The Open Web Application Security Project,
“SettingupMobileTestingLab,” 7 June 2013,
www.owasp.org/index.php/
SettingupMobileTestingLab

 34 Op cit, Hewlett-Packard Development
Company L.P.

 7 Whittaker, Z.; “Kindle Security Vulnerability Can
‘Compromise’ Amazon Accounts,” ZDNet,
16 September 2014, www.zdnet.com/article/
kindle-security-vulnerability-can-compromise-
amazon-accounts/

 8 Wallop, H.; “eBay Hacking: Online Gangs
Are After You,” The Telegraph, 23 May 2014,
www.telegraph.co.uk/technology/internet-
security/10849689/eBay-hacking-online-gangs-
are-after-you.html

 9 Android Studio, “Shrink Your Code and
Resources,” http://developer.android.com/
tools/help/proguard.html

 10 Hewlett-Packard Development Company L.P.,
Mobile Application Security Study, February
2014, www8.hp.com/h20195/V2/GetPDF.
aspx/4AA5-1057ENW.pdf

 11 Sanchez, A.; “Personal Banking Apps Leak Info
Through Phone,” IOActive, 8 January 2014,
http://blog.ioactive.com/2014/01/personal-
banking-apps-leak-info-through.html

 12 Higgins, K. J.; ”Weak Security in Most Mobile
Banking Apps,” InformationWeek DarkReading,
12 December 2013, www.darkreading.com/
vulnerabilities---threats/weak-security-in-most-
mobile-banking-apps/d/d-id/1141054

 13 Op cit, Sanchez
 14 Microsoft, “What Is the Security Development

Lifecycle?,” Security Development Lifecycle,
www.microsoft.com/en-us/sdl/

 15 BSIMM, “What We Do,” www.bsimm.com/
 16 Sareen, P.; “Updated: After Ola & ZopNow

Tech Screw Up, This Time Foodpanda
Becomes the Target of a New Hack for Getting
Free Food!!,” Inc42, 10 April 2015, https://
inc42.com/buzz/after-ola-zopnow-this-time-
foodpanda-becomes-target-of-a-new-hack-for-
getting-free-food/

 17 IEEE Cybersecurity, “Avoiding the Top 10
Software Security Design Flaws,” 13 November
2015, http://cybersecurity.ieee.org/center-for-
secure-design/avoiding-the-top-10-security-
flaws.html

 18 The Open Web Application Security Project,
“OWASP Mobile Security Project,” 18 July
2016, www.owasp.org/index.php/OWASP_
Mobile_Security_Project#tab=Mobile_Security_
Testing

 19 Euopean Union Agency for Network and
Information Security, “Smartphone Secure

