
ISACA JOURNAL VOL 3 1
©2017 ISACA. All rights reserved. www.isaca.org

featurefeature

flaws that it was discarded before being released.
The earliest released protocol version was SSLv2,
which was released in 1994.1 SSLv3 was released
in 1995, attempting to address vulnerabilities in
SSLv2. With the next version of the protocol, the
name was changed to TLS and was released in
early 1999 as TLSv1. TLSv1.1 was released in 2006,
followed by TLSv1.2 in 2008. TLSv1.3 is currently in
draft as of the date of this writing.

It is important to note that each successive protocol
version was designed to address shortcomings
in the previous version. Older protocol versions
continue to be used, however. For example, it is not
completely unheard of to encounter a site that still
supports SSLv2, even though it is known to have
been severely flawed for more than 20 years.

Ideal Configuration

Before getting into the details of how to check
an organization’s HTTPS security posture, it is

HTTPS has been around since 1994. Historically,
HTTP over Secure Sockets Layer (SSL)/Transport
Layer Security (TLS) was treated as a dark and
capricious form of magic best left undisturbed. For
most of its existence, the general consensus was
that HTTPS was for securing access to websites
such as banks, or to websites from which one could
make online purchases. In the early days, it was
not uncommon for only the authentication to those
sites to be encrypted and, once authenticated,
everything reverted back to plain old, unencrypted
HTTP. Though the demand for greater privacy
and security has only increased, and HTTPS is
becoming more common, there is still an alarmingly
high number of major websites that do not employ
HTTPS at all, implement it incorrectly, or are
configured to use old, outdated methods. Given its
importance, inadequate, incorrect or nonexistent
HTTPS is a cause for concern.

Then there is the matter of internal websites. For
decades, conventional wisdom held that if the traffic
was on an internal network, it was sufficiently secure
and adding HTTPS to the mix was an unnecessary
complication. Often paired with this argument was
the notion that HTTPS caused such enormous
performance degradation that implementation was
simply out of the question. Both of these points, while
possibly valid at some point in the distant past, could
not be more wrong today.

Consensus is changing, however. Slowly, the world
is inching in the direction of ubiquitous HTTPS.
Unfortunately, pervasive use of secure, correctly
configured HTTPS is often surprisingly low.
What follows is a discussion of the nature of
HTTPS, how it should be configured, and how
to remotely assess that configuration for oneself,
rather than relying on verbal or written attestation
from server or application administrators.

Background

HTTPS is implemented using protocols that operate
at the application layer, layer 7 of the OSI model.
Version 1 of the SSL protocol had enough serious

HTTPS Posture Assessment

Kurt Kincaid, CISA, Lean Six Sigma Green Belt
Is an information security professional with a Fortune 50 company. He
focuses on encryption and its implementation, certificate/key management,
access management, and open-source security solutions. He can be
reached at kurt@kurtkincaid.com.

ISACA JOURNAL VOL 3 2
©2017 ISACA. All rights reserved. www.isaca.org

potentially vulnerable to some variant of the POODLE
attack. This encompasses the vast majority of cipher
suites. The only remaining option is to look toward
stream ciphers, which do not use padding.

The only stream cipher options are RC4 (very badly
broken and should never be used) or Advanced
Encryption Standard (AES)—a block cipher—when it
is used in a mode that makes it behave like a stream
cipher. One such mode, Galois/Counter Mode (GCM),
was introduced in TLSv1.2. Prior protocol versions do
not support AES-GCM cipher suites. An interesting
side benefit of the AES-GCM cipher suites is that
they tend to be significantly faster than the other
AES cipher suites. In extensive performance testing
performed on a wide variety of hardware, AES-GCM
cipher suites are 40 to 80 percent faster.

As a result, the only configuration one should be
using is TLSv1.2 with the only AES-GCM cipher
suites enabled. This leaves open the question of
backward compatibility and, depending upon the
circumstances, one may need to leave lower-protocol
versions and weaker ciphers enabled. These should
be enabled only if there is a very specific reason.

What follows is a checklist of configuration items for
an ideal deployment. Some of the points mentioned
fall outside the scope of this article. For detailed
explanations, readers are strongly encouraged to
refer to a reliable source such as the Qualys SSL
Labs website3 or Bulletproof SSL and TLS,4 both of
which are discussed herein.

Configuration checklist:

• Enable TLSv1.2 only. Explicitly disable SSLv2,
SSLv3, TLSv1 and TLSv1.1.

helpful to have some concept of the ideal secure
configuration. While this article is not intended
to be a configuration manual, it will help to put
things in context, allowing easy identification of
strong configuration, configuration that is slightly
off the mark, or configuration that is so incorrect or
outdated as to be completely unacceptable.

Ideally, TLSv1.2 should be used to the exclusion
of all other versions. Payment Card Industry Data
Security Standard (PCI DSS) v3.22 requires that all
payment card data be encrypted using TLSv1.1 or
TLSv1.2 by 30 June 2018. Certainly, not all data are
PCI-related, but with PCI DSS v3.2 having set the
bar, it is reasonable to expect other standards and
regulations to follow suit.

As mentioned previously, SSLv2 is so badly broken
that it is not suitable for any purpose. SSLv3, which
had been on its way out for quite some time, was
rendered essentially useless by the Padding Oracle
on Downgraded Legacy Encryption (POODLE) attack
and, likewise, should not be used. To explain how
this affects TLSv1, TLSv1.1 and TLSv1.2, a brief
digression into the POODLE attack itself is required,
as well as some of the underlying components of TLS.
Encryption falls into two categories: symmetric
and asymmetric. With symmetric encryption, the
same key is used to encrypt and decrypt. With
asymmetric encryption, there is a public key and
a private key. What is encrypted with the public
key can be decrypted only by the private key. It is
important to note that asymmetric keys are used for
authentication only during the SSL/TLS handshake.
Once the handshake completes successfully,
all encryption switches over to using symmetric
encryption for speed and efficiency.

Symmetric encryption also falls into two categories:
stream ciphers and block ciphers. Stream ciphers
operate on one byte at a time, whereas block
ciphers operate on blocks of bytes of a fixed length.
Depending upon the length of the message to be
encrypted, it may need to be padded at the end to
make the length a multiple of the block size. The
POODLE attack exploits how this padding is done.
Therefore, any TLS block cipher that uses padding is

 Encryption falls into two
categories: symmetric and
asymmetric.

ISACA JOURNAL VOL 3 3
©2017 ISACA. All rights reserved. www.isaca.org

Figure 1—Qualys SSL Labs Sample Output

Source: Qualys SSL Labs. Reprinted with permission.

is actually relatively simple, given the right tools.
What follows is a brief discussion of the tools that
can be used for this task.

SSL Labs
To assess the HTTPS configuration of an Internet-
facing server, the easiest and, arguably, the most
thorough method is to use the Qualys SSL Labs7
website. At the site, one can enter a server’s
address and, after a few minutes, the SSL Labs
site will return the full details of how HTTPS is
configured on the server, including supported
protocol versions, supported cipher suites and
numerous other details. Even better, the site
does much of the interpretation of the results,
assigning the organization’s site a grade between
A and F, along with an explanation for the grade
(figure 1).

In addition to the details, the site also provides
documentation and recommendations on how
to address whatever shortcomings it detects in
the server’s configuration. The author of the site
knows the details and inner workings of TLS
as well as anyone, and his documentation and
methodology are among the best this author has
ever encountered. His book, Bulletproof SSL and
TLS,8 is necessary reading for anyone who wants a
full understanding of TLS, how it works and how to
configure it correctly.

• Enable cipher suites that support AES in GCM
mode only, for example, ECDHE-ECDSA-AES256-
GCM-SHA384.

• Enable only cipher suites that support forward
secrecy,5 denoted by having “DHE” in the name,
as in the previous example.

• Enable cipher suites that support SHA256 or
SHA384 only.

• Use only digital certificates that have an RSA key
of at least 2,048 bits or an elliptic curve key of at
least 256 bits.

• Include the certificate’s full trust chain, not
including the root certification authority (CA)
certificate.

• Do not include unnecessary certificates in the
trust chain.

• Ensure that compression is disabled.

• Ensure the server supports TLS Fallback Signaling
Cipher Suite Value (SCSV)6 to prevent protocol
downgrade attacks.

Checking the Posture

While there are many subtleties to an HTTPS
connection and the configuration can become quite
complex, assessing the details of the configuration

SSL Report: google.com (74.125.28.113)
Assessed on: Saturday 19 Nov 2016 18.11.10 UTC │ [HIDDEN] │ Clear cache

Visit our documentation page for more information, configuration guides, and books. Known issues are docuemnted here.

Summary

A
Certificate

Protocol Support

Key Exchange

Cipher Strength

0 20 40 60 80 100

Overall Rating

Scan Another >>

ISACA JOURNAL VOL 3 4
©2017 ISACA. All rights reserved. www.isaca.org

Figure 2—OpenSSL s_client Output (1)

Source: K. Kincaid. Reprinted with permission.

By default, OpenSSL tries its highest level of
encryption options first. As a result, this is generally
a quick test of the maximum encryption level
supported by the server. The previous command
produces a modest amount of output, with the
most useful part at the end (figure 2).

The output shown in figure 2 indicates that
https://duckduckgo.com:

1. Uses a 2,048-bit key

2. Has compression disabled

3. Supports TLSv1.2

4. Uses cipher suites that support Forward Secrecy
(as indicated by the DHE)

5. Uses AES cipher suites in GCM mode, thus
addressing block padding issues

6. Uses cipher suites that support SHA256

7. Does not include the root CA in the trust chain.
If the root CA had been present in the trust
chain, the Verify line at the end would have read:
Verify return code: 19 (self signed
certificate in certificate chain).

Also, the “unable to get local issuer” message
is expected, given the way the command is
executed. OpenSSL was not provided with a list

The SSL Labs site works very well for sites that are
Internet facing. For internal sites, there are multiple
tools, but the two discussed herein are OpenSSL9
and sslyze.10

OpenSSL
For spot testing, OpenSSL is the most direct
approach. On Linux and related operating systems,
OpenSSL is likely already installed. If it is not, it is
readily available as an additional package from the
OS’s package repository. For Windows, one has the
option of compiling it for oneself or downloading a
compiled version from a third party. Unless there is
a specific need to compile OpenSSL, it is strongly
encouraged to go the third-party route. To this end,
https://indy.fulgan.com/SSL/ is recommended. On
a daily basis, the site owner compiles all versions of
OpenSSL, dating back to v0.9.8r. After downloading
the version of choice and unzipping the file, one
is ready to start testing using OpenSSL’s s_client
command.

For the most basic usage, the following command
should be issued:

openssl s_client -connect
duckduckgo.com:443

A port must always be specified, even if it is the
default HTTPS port of 443.

 While there are
many subtleties to
an HTTPS connection
and the configuration
can become quite
complex, assessing
the details of the
configuration is
actually relatively
simple.

ISACA JOURNAL VOL 3 5
©2017 ISACA. All rights reserved. www.isaca.org

Figure 3—OpenSSL s_client Output (2)

Source: K. Kincaid. Reprinted with permission.

of trusted certificate issuers against which to
compare the server certificate.

Thus, in a single command, seven of the nine
configuration points from the configuration checklist
discussed in the previous section have been
confirmed. What the command does not indicate,
however, is what else is permitted by the server.
True, in this case the secure features are enabled,
but that does not preclude the possibility that
something very insecure may be configured as well.
Fortunately, the s_client command allows one to be
much more tactical about connections to the server.

Among the various s_client options, it is possible
to specify the protocol version to use. The option
is exclusive; for example, if TLSv1.2 is specified,
OpenSSL will connect with only TLSv1.2 and will
not negotiate with other versions. The syntax of the
command is nearly identical to what was shown
previously, with the addition of the protocol version.

The output shown in figure 3 demonstrates:

1. The protocol version to use is specified. The
options are:

• -ssl2

• -ssl3

• -tls1

• -tls1_1

• -tls1_2

2. The “wrong version number” error is indicative of
a protocol version mismatch between client and

server. This implies that the client has requested a
protocol version that the server does not support.

3. There is further evidence of the failed connection
by the presence of “NONE” for the connection
protocol and for the cipher suite.

The command shows that Google.com does
not support SSLv3. By repeating the command
with the various protocol versions, one is able to
quickly determine which versions are supported
by the server.

SSLYZE
For more detail on how the server is configured,
sslyze is the perfect tool for the job. It connects to
the server and walks through all of the connection
options and, from the command line, provides
much of the same details provided by the SSL
Labs site.

The tool is written in Python, but binary executable
versions are also available for Windows. There are
many connection options, but for a fairly thorough
assessment of the target server, the command
syntax may look like the following (this should be on
a single line):

 While encrypting
everything may not
actually be feasible,
the concept has
merit.

ISACA JOURNAL VOL 3 6
©2017 ISACA. All rights reserved. www.isaca.org

The difference is subtle, but important. Part of
answering the question of how is answering the
question of how to do it correctly. After all, if one
is not taking the time to do it correctly, it raises the
question of how seriously the subject is being taken
in the first place. Experience shows there is little
difference between the amount of effort required
to implement encryption with shortcuts and half-
measures versus to implement it correctly.

Once implemented, it is vital to verify and monitor.
There are nuances to the configuration of HTTPS
that server and application owners cannot be
expected to know. Unless they have had reason
to spend a significant amount of time learning the
inner workings of SSL/TLS configuration, their

sslyze --resum --reneg --http_
headers --compression --heartbleed --certinfo_full
--sslv2 --sslv3 --tlsv1 --tlsv1_1 --tlsv1_2 --hide_
rejected_ciphers --ca_file=C:\myPrivateTrustChain.
pem --json_out mySslyzeOutput.txt myServer:443

In addition to the specified checks, the private trust
chain has also been provided. This is particularly
useful if the server is using a certificate from an
internal public key infrastructure (PKI). Condensed
output will be delivered to the screen, while exhaustive
output (including all of the cipher suites that were
rejected for each protocol, etc.) will be written to
a JavaScript Object Notation (JSON) file for later
analysis. Even though the screen output is condensed
compared to the JSON output, it is still rather lengthy.
Figure 4 shows a small sample of the output.

One caveat with using both SSL Labs and sslyze
is that both tools will easily make more than 100
connections to the target server. While the actual
burden on the server is minimal, if the servers are
being monitored closely for connection errors—
for example, with a digital commerce site—both
tools will definitely show up on the radar. Use
with caution and only after getting approval from
management to proceed. OpenSSL, on the other
hand, while not as comprehensive, can confirm
support for all of the protocol versions with as few
as five connections.

Conclusion

At the recent Thales HSM User Conference, one of
the phrases used several times over the course of
four days was “encrypt everything.” While encrypting
everything may not actually be feasible, the concept
has merit. First, it greatly simplifies things from a
policy perspective. No longer are there gray areas
requiring a decision about whether encryption is
required in this particular case or not. The answer to
that question would always be “yes.” Simple.

Second, and even more important, it gets everyone
thinking not in terms of if, but in terms of how.

Figure 4—Sslyze Condensed Output

Source: K. Kincaid. Reprinted with permission.

[...]

SCAN RESULTS FOR MYSERVER:443 - XX.XX.XX.XX:443

 * TLSV1_2 Cipher Suites:
 Preferred:
 TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 ECDH-256 bits 256 bits

 Accepted:
 TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 ECDH-256 bits 256 bits
 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 ECDH-256 bits 256 bits
 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA ECDH-256 bits 256 bits
 TLS_RSA_WITH_AES_256_GCM_SHA384 - 256 bits
 TLS_RSA_WITH_AES_256_CBC_SHA256 - 256 bits

 * TLSV1_1 Cipher Suites:
 Preferred:
 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA ECDH-256 bits 128 bits

 Accepted:
 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA ECDH-256 bits 256 bits
 TLS_RSA_WITH_AES_256_CBC_SHA - 256 bits
 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA ECDH-256 bits 128 bits
 TLS_RSA_WITH_AES_128_CBC_SHA - 128 bits
 TLS_RSA_WITH_3DES_EDE_CBC_SHA - 112 bits

 * SSLV3 Cipher Suites:
 Server rejected all cipher suites.

 * Session Renegotiation:
 Client-initiated Renegotiation: OK - Rejected
 Secure Renegotiation: OK - Supported

 * Deflate Compression:
 OK - Compression disabled
[...]

ISACA JOURNAL VOL 3 7
©2017 ISACA. All rights reserved. www.isaca.org

Endnotes

 1 Ristic, I.; Bulletproof SSL and TLS, Feisty Duck,
USA, 2014

 2 PCI Security Standards Council, Document
Library, https://www.pcisecuritystandards.org/
document_library

 3 Qualys SSL Labs, https://www.ssllabs.com/
 4 Op Cit, Ristic
 5 Ibid.
 6 Moeller, B.; A. Langley; TLS Fallback Signaling

Cipher Suite Value (SCSV) for Preventing
Protocol Downgrade Attacks, Internet
Engineering Task Force, April 2015,
https://tools.ietf.org/html/rfc7507

 7 Op cit, Qualys SSL Labs
 8 Op cit, Ristic
 9 Open SSL, https://openssl.org
 10 Github.com, nabla-c0d3/sslyze, https://github.

com/nabla-c0d3/sslyze
 11 Kohno, T.; N. Ferguson; B. Schneier;

Cryptography Engineering: Design Principles
and Practical Applications, Wiley, USA, 2010

primary concern is delivery, not ensuring that it is
done using the ideal secure configuration. As a
result, most often, a default configuration is used
and it is nearly axiomatic that a default configuration
is never an ideal secure configuration. It is important
to remember that it is more likely to find flaws in the
implementation than in the cryptography itself.11

Using the methods described here, it is possible to
ensure that an HTTPS posture is secure. Routine
reassessment enables an organization to make
sure it stays that way and allows prompt detection
of those servers that may have slipped out of
compliance due to misconfiguration or changes
to security requirements. As vulnerabilities are
discovered and there are changes to the security
landscape itself—such as the release of TLSv1.3—
these methods allow stakeholders to adapt to the
changing environment and ensure that the HTTPS
posture remains strong.

