
ISACA JOURNAL VOL 2 1

personalized web-based services that had been
going on for three years had an extremely negative
review a month before the deadline, since nothing
had been developed. A new team of four people,
including a new leader, was asked to take over and
they were able to meet the deadline with impressive
results. The new team focused on immediately
developing a working system without bothering
with long meetings, documentation and formal
reviews. They conducted thorough internal trials
to identify and immediately correct any issues
and created documentation after the system was
working and stable.

Audit, on the other hand, has traditionally used fairly
strict standards and frameworks, resulting in rather
rigid audit engagement constraints that, essentially,
represented projects. IT projects have similarly
inflexible models. However, they have evolved
from the formal waterfall model, which has strict
steps, to less formal, but very often more efficient,
models. These more efficient models are usually
collectively known as Agile. In the rigid models,
proportionally much more effort is put into design
and specification documentation. In Agile models,
design and specification documentation are kept
to the bare minimum required, and the major part
of documentation is created at the operations and
support levels, e.g., user manuals, which occur
much later in the system life cycle.

The documentation effort for the waterfall and Agile
methods is illustrated in figure 1. The steep slope in
the beginning of the project for the waterfall method
is due to project overhead, such as project planning
as well as specifications (both high-level and detailed)
and design. After the design is completed, relatively
little documentation is required until near the end,

Agile Audit

Time constraints are an integral part of every
auditor's work. Audits must finish on time. Using
the allotted time efficiently is a major concern. Agile
audit is primarily about increasing the efficiency
mainly of complex audits by parallelizing tasks,
eliminating or mitigating bottlenecks, and assigning
time to various tasks that is proportional to each
task’s importance.

The term “Agile” usually refers to software
development and emphasizes individuals and
interactions over processes and tools, working
software over comprehensive documentation,
customer collaboration over contract negotiation,
and responding to change over following a plan.1

Its appropriateness to complex systems is also
stressed in the Certified Information Systems
Auditor® (CISA®) reference manual: “The
term ‘agile development’ refers to a family of
similar development processes that espouse
a nontraditional way of developing complex
systems.”2 As an example, a project to develop

Spiros Alexiou, Ph.D., CISA
Is an IT auditor who has been with a large company for nine years. He
has more than 20 years of experience in IT systems and has participated
and led both projects and audits employing Agile methods. He can be
reached at spiralexiou@gmail.com.

Do you have
something
to say about
this article?
Visit the Journal
pages of the ISACA®
website (www.isaca.
org/journal), find the
article and click on
the Comments link to
share your thoughts.

 In Agile models,
design and
specification
documentation are
kept to the bare
minimum required,
and the major part
of documentation
is created at the
operations and
support levels.

featurefeature

ISACA JOURNAL VOL 22

such as an audit. In an Agile audit, one would
focus on identifying and rapidly beginning testing
the issues that carry the most risk, just like Agile
software development would focus on creating
a working prototype that would be subsequently
improved. This principle is often referred to as
Thompson’s rule for first-time telescope makers,
which states that “It is faster to make a four-inch
mirror then a six-inch mirror than a six-inch mirror.”3

The term “Agile audit” has been used before
this article, and with more or less different
meanings.4, 5, 6, 7, 8 It is necessary to briefly review
these meanings to distinguish them from the
meaning “Agile audit” is given in this article.

In one case, the following realization is expressed:
“And yet, our audit cycle times can be longer than
desired. Our output may be different from what
our stakeholders expected. Our quality assurance
processes may introduce constraints to efficiency that
fail to produce more value-added insights.” This led
to a search to “improve internal audit's adaptability
and response time” and “a way to standardize our
approach to oversight of strategic projects and
gain our stakeholders’ acceptance of our role.”9
While the starting point is the same, the concept of
agility, as used here, is very different. In the second
case, agility is also used in a different context, that
of keeping better track of the business impact.10

where support documents need to be produced, such
as user manuals.

Figure 1—Documentation Effort as
a Function of Project Time for the

Waterfall and Agile Models

Source: S. Alexiou. Reprinted with permission.

In contrast, for Agile, the documentation
requirements are much lower than the waterfall
documentation requirements—practically zero until
near the end of the project where, again, support
documents such as user manuals need to be
produced. Agile is much more efficient in that during
the final state, documentation is thoroughly and
formally captured, not at the initial or intermediate
stages of the final deliverable. Documentation is only
created when it is needed and, ideally, in the form that
is needed, such as comments in the actual code.

In Agile models, for software development and other
endeavors, the project team has more freedom
and initiative to make adjustments as the project
progresses. This is especially pertinent to audit,
since the goal of the audit is not to serve its own
methodology, but to add business value. This, in
turn, if properly run, can result in higher efficiency
and better results. For example, in a conventional
(waterfall) project to, say, create a new IT system,
one would typically first deal with specifications,
then design, then development/implementation.
Testing and acceptance would be last. An Agile
approach would be quite different—a distinction
that can be seen even in a very different project,

Waterfall

Do
cu

m
en

ta
tio

n
Ef

fo
rt

Time->

Agile

 In an Agile audit,
one would focus
on identifying and
rapidly beginning
testing the issues
that carry the
most risk.

ISACA JOURNAL VOL 2 3

to request only relevant data and to limit the
perturbation of auditees who need to furnish the
data—it is often counterproductive.

Typical audit engagements start with an exploratory
phase in which the auditors familiarize themselves
with the object of the audit. For instance, if an
IS system will be audited, the auditor needs to
understand what data it holds or processes, what
the interfaces are, who uses the system, who the
administrator is, and so on. These determinations
need to be made before drafting an audit program.
However, a few lines of data provide much more
information and are a lot faster to comprehend
than trying to read an entire manual of often very
poor documentation or relying on the explanations
of auditees who often have a very different focus
from the auditor. In addition, most people, auditors
included, learn better from examples than from
dry documentation that needs to cover extremely rare
cases on an equal footing with more normal cases
(such cases may be encountered during testing, but
in Agile audit, they are resolved then and there). Yet
many audit departments have strict rules that no
data are to be requested until the audit program is
finalized. This has the following adverse effects:

• The audit program is drafted—for instance, to
deal with data—by people who have never seen a
single line of the data.

The next example is much closer to the definition
used here, but also involves other concepts such as
self-assessments and partnership with management
that may also be applied to non-Agile audits.11
Another example shares many of the concerns of
this article, but stops short of exactly defining the
main distinctive features of an Agile audit.12 The last
example recognizes the four audit phases (planning,
fieldwork, response and final) and the temporal and
logical separation they produce (they are called “Toll
Gates” in that paper), and strives to be agile within
these constraints, whereas this article calls for blurring
or eliminating these formal Toll Gates.13

In this article, Agile audit is given a very concrete
meaning that is distinct from the previous references.
Specifically, it refers to blurring or altogether
abolishing the sacrosanct temporal separation
between planning and fieldwork. This means the
end of planning is not necessary for fieldwork to
start or for data to be requested, and tasks may
be run in parallel. In addition, the production of a
formal planning document is no longer required.
This is motivated by the same considerations on
documentation (which is what planning essentially is)
as the previous remarks on Agile projects and their
management. For instance, documentation may
consist of an email to the auditee requesting specific
information, plus the processing of that information
and results of the test run, which are normally done
at the fieldwork phase. Instead of documenting what
will be requested and how it will be used, Agile audit
documents what was requested and how it was used.
Similarly, findings may be shared with the auditees
before the final report,14 but this is not a concern in
the present article because this does not normally
represent a major bottleneck.

What Is Wrong With Non-Agile Audits?

Even though IS auditors, audit projects and
systems come in contact with Agile models, their
own rules are often outdated. For instance, many
audit departments specify that absolutely no
data will be requested until the audit program has
been finalized. Although this is well intentioned—

 Many audit
departments have
strict rules that
no data are to be
requested until the
audit program is
finalized.

ISACA JOURNAL VOL 24

altogether. Especially for complex audits, it is
typically much easier to assess risk with detailed
information than with only sketchy information.
For instance, examining the data, its structure,
and noting trends and exceptions can provide
useful clues.

Once the audit program is finalized, often with
misinterpreted information, precisely because no
data were ever seen by the auditors, two things
can happen. At worst, perhaps because of the poor
understanding of the system and the associated
risk, not to mention the approaching report
deadlines, this will be a drive-by audit15, 16 in which
tickboxes will be checked and everything will be
declared fine without looking deeply within the data
or processes. At best, the auditors will realize their
misunderstanding and will have to make a choice of
revising the audit program and/or steps (and have
to explain why the audit program was inadequate
in the first place) or to note that some issues
were not audited due to time or other constraints.
Additional time would be lost if the auditors had
done other work based on assumptions about the
data they had never seen, such as writing software
to analyze the data while waiting for the data. Audit
inefficiencies are often a strong factor resulting in
drive-by audits. Because time frames and deadlines
must be respected, if time is spent inefficiently, it
means that auditors will be tempted to perform the
trivial tests that are sure to be completed on time
rather than the more involved or complex tests
dealing with many important risk factors.

During an audit, the auditor is unaware of the
priorities of the ultimate findings. The main goal is to
discover and evaluate risk and propose controls for
these areas of risk. Audit programs often essentially
assume the outcome is already known and try to
specify not only the risk areas, but also how each
step is to be carried out. As a result, audit programs
are quite suitable for compliance or drive-by audits.
Operational people tend to dislike such audits as
they very rarely tell them anything useful. These
types of audits tend to take up a lot of time and
usually result in proposals that will mean more

• As a result, the auditors must rely on their own
interpretation of what they were told by the
auditees, whose view of the system and the
data is completely different from the auditors’
perspective. This, in turn, means that aspects that
are possibly important for the audit are left out
of the briefing entirely because the auditees did
not consider them interesting or relevant and the
auditors did not know to ask about them.

• Even if the data, system, processes, people and
functions are well understood, this still does not
mean a rigid, written-in-stone audit program will
result. Based on what the audit finds, there may
be indications that more work is needed to cover
risk that was initially unknown or underestimated.
For instance, during the course of the audit, it
may become clear that there are missing controls
resulting in a high fraud risk.

• Getting all information before starting any fieldwork,
even if one had enough information to carry out
some steps from the very first day, creates a
temporal bottleneck. In addition, when data are
finally requested, getting the data involves further
delays because the auditees who must provide the
data may have other, higher-priority tasks or simply
because extracting the necessary data as requested
by the auditors may take time.

• Because planning involves limited information,
risk may be over- or underestimated or missed

 During an audit, the auditor is
unaware of the priorities of the
ultimate findings. The main goal
is to discover and evaluate risk
and propose controls for these
areas of risk.

ISACA JOURNAL VOL 2 5

are still trying to finalize remaining audit program
steps. In addition, auditors can analyze data
already collected while waiting for the audit team
to schedule planning phase meetings with other
auditees or the team members. By no longer
insisting on strict temporal separation between
planning and fieldwork, audit becomes more
efficient. Tasks run in parallel (i.e., planning may be
going on as the auditees collect requested data, or
fieldwork is occurring while meetings to address
remaining planning issues are being scheduled). For
instance, if the audit team has already established
that it will try and reconcile the user list generated
by the system with the list of authorizations, does
the auditor really need to wait to finish all other
steps of the audit program? Waiting may mean
finding time slots for more exploratory meetings
with relevant, but possibly very busy, personnel as
well as with audit team members in order to finalize
the remaining steps before requesting the relevant
data or actually running the reconciliation. This is
illustrated by means of examples.

Real-world Examples

An audit involved checking billing records produced
by IS devices. These records are used to charge

hassles with hardly any real value. That said,
there are valid reasons for having some compliance
audits and standard audit programs and models
that are well suited to accommodate compliance
audits. It is the application to all audits that may
be outdated.

What Does Agile Audit Do
Differently?

Instead of insisting on compliance with methodology
and protocol, an Agile audit gives auditors much
more freedom during the engagement phase to come
in contact with the system, settings, data, and the
people and processes being audited. This enables
a much better understanding of the issues and risk
to be addressed as well as how to go about testing
them in detail (e.g., what tests to devise).

An Agile audit places much less emphasis on
finalizing and documenting a formal audit program.
In operational audits, an audit program is designed
to address risk and some of these risk factors
may crystalize during and not before the audit. For
instance, it is very difficult, and wasteful, to devise
all possible tests to look for fraud before having
seen the data. In addition, risk that may have
been identified as major may turn out to be minor
or nonexistent due to strong mitigating controls.
Also, risk that was considered much lower or not
considered at all may be promoted as the biggest
risk factors. Alternatively, as fieldwork progresses,
it may be realized that risk that was not even
considered before, either because the auditors did
not know the area enough to ask or the auditees
did not bring up the risk in the discussion, is quite
important. As a result, an Agile audit program that
focuses on tests and adapts to the work done and
evidence uncovered may be much more suitable to
addressing risk.

Agile audits, thus, address major bottlenecks
in many audits. Necessary data, such as lists
of system users from the system itself and an
authorization database or file, can be requested
and prepared by the auditees while the auditors

ISACA JOURNAL VOL 26

three times as long and concluded that the data were
not good enough for their code.

A similar case involved a penetration test on
company systems by an IS auditor. It turned out that
getting the relevant permissions to conduct the test
took a long time, as did preparing the penetration
tools. The only reason the audit ran on schedule
was because applying for the permissions and tool
preparation started before and not after finalizing
the audit program.

In yet another audit dealing with the security of
system interfaces, each interface had its own security
issues that could be determined only after detailed
information was collected. Once again, the audit
ran on time, but only because there was no strict
temporal separation between planning and fieldwork.
Specifically, knowing that audit team members
were busy with other audits and finding a time slot
to schedule a team meeting was not easy, the lead
auditor prepared a document for the audit team with
the list of interfaces and their function and high-level
issues and simultaneously asked the auditees for
relevant data. Some of these data came in while
details of the interface architecture were being
discussed and tasks were being assigned within the
audit team. Thus, at the planning phase, the audit
team had concrete information upon which to build.

Since the team had almost all the necessary data
early, there were no bottlenecks associated with
waiting for the data; in fact, because data were
available, some tests finished early. It turned out
that only one more set of data was needed to verify
and assess the importance of a finding. This took
substantially more time because auditees were busy
with other priorities, whereas they had much more
time when the initial data were requested. The audit
team also adopted the practice of documenting and
verifying each finding with the auditees as it came in
without waiting for all findings to be completed. This
was well received by the auditees, who could find a
short window of time to discuss a single finding and
had a much harder time finding the time to discuss
a number of findings.

for connection and volume and, as a result, they
can be cross-checked by information collected at
the network where probes are installed. Because
of their complexity, probe records are not used
for billing. This is a highly complex task involving
sophisticated correlations, such as those among
other complications such as traffic using different
network segments (i.e., not being picked up by the
same probe).

As it turned out, there was only a single, very highly
skilled auditor capable of carrying out this task. The
auditor had a lot of experience with these systems
before joining the audit team and undertook the
 task to cross-check billing records. Although initially
it was required to specify detailed steps in the audit
program, it soon became apparent that no one else
could follow the steps. This made no sense. So,
instead, the auditor created software to perform
the cross-check and documented the functionality
in his high-level code so that everyone could verify
the findings. In addition, the auditor requested a
small sample of data simultaneously with the audit
announcement release. This enabled the auditor to
start working on the cross-checking code immediately.

The result was that a highly complex audit was carried
out in a very short time and with important results.
As a spin off, the legacy of this audit was a full-blown
system that could be used for monitoring billing on a
permanent basis. For comparison, the same project
was also assigned to an external company that took

 An Agile audit
needs and makes
full use of the
qualifications and
expertise of each
team member.

ISACA JOURNAL VOL 2 7

into the audit program will be directly used in the
results, Agile methods offer little or no advantages.

Identifying and prioritizing risk areas are key
components in the audit program. It may be that,
in a particular audit, little advantage is to be gained
by using Agile methods. Agile audit is not an all-
or-nothing method that the audit function must
either always employ or always avoid. It is up to the
audit team and the team leader to decide if task
parallelization brings added efficiency or otherwise
benefits the audit. For instance, if all necessary
information is readily available and any requested
meetings are immediately granted, then the
importance of an Agile audit decreases.

Agile audits do not eliminate planning. An Agile
audit substitutes a rigid plan with an adaptively
improving plan that runs parallel to some fieldwork.
Nor does an Agile audit eliminate quality control and
documenting the work done and, especially, the
findings. Null results must still be documented, as
they provide assurance.

Similarly, an Agile audit does not eliminate or
diminish the importance of leadership. If anything,
just like Agile software development, it places
even more emphasis on leadership and team
competence, as the auditors are not just executing
strictly defined audit steps. They also design,
modify and improvise these steps.

Last, it may be argued that a well-planned audit
minimizes the interference of audit with everyday
auditee work, while an Agile audit, which is

Misunderstandings, Risk and Pitfalls

Just as in Agile software development, an Agile
audit is no substitute for risk identification and
rational planning. Someone, usually the project
manager or lead auditor, must come up with a
rough skeleton of the audit program, which may
be enhanced by the team. However, this is a very
crucial first step in that a framework for discussion
is established as fast as possible and the team has
a concrete foundation on which to build. This is no
different from standard audit programs, except that
the steps need not be as detailed and definitely
do not need to be formally documented. As noted
earlier, audit programs tend to be rigid and written in
a way that an auditor with minimal qualifications can
follow. In contrast, an Agile audit needs and makes
full use of the qualifications and expertise of each
team member.

Agile audit does not do away with the need to
document what was done. The difference is when
the documentation is created and what it covers.
Agile audit does not formally document in detail
what it sets out to do and how it will go about doing
it, but rather what it did and how.

A useful counterexample might be an audit
conducted of a new business offering. In this case,
planning involved questions on topics such as:

• Market issues

• Legal/regulatory environment

• Processes and systems

• IT support

• Business continuity issues

In this counterexample, typically a questionnaire
would need to be constructed and filled out by
auditees. The audit program is, essentially, this
questionnaire. Hence, planning for what to ask
and what evidence will be required to verify the
responses is crucial and will be, by and large, also
the final deliverable. Since this step will be present
both in traditional and Agile audits, i.e., the work put

 Agile audit is not an all-or-nothing
method that the audit function
must either always employ or
always avoid.

ISACA JOURNAL VOL 28

within the audit team. For instance, what needs
to be checked and what will be needed? This
dissemination can be in the form of a simple email
and need not be formal.

• Request data known to be necessary
straightaway, without waiting for team meetings.
If getting all data is time-consuming, focus on
a sample of the data. For instance, if extracting
a large quantity of data is both necessary for
the audit and time-consuming, request a few
lines immediately and set a time frame for the
remaining data. Communicate data as they come
in to the audit team. This and the previous task will
normally be done by the lead auditor.

• Hold informal meetings with the team and
auditees to discuss the issues, ensure that
important risk areas identified by the team or the
auditees are not left out, verify that all necessary
data have been collected or requested, and assign
tasks. Keep track of work done, work assigned,
points discussed, etc., but not in a formal
document.

• Discuss findings as they are gathered. Once they
are accepted, document them and, if possible,
verify with the auditees. There is no need to wait
for all the findings to verify a single, documented
finding. Auditees are often more likely to

perceived as less well planned, may result in more
interference. Although experience does not seem
to justify this presumption—indeed Agile audits
seem to focus much more on material issues—the
bottom line is that management and auditees
usually reply positively to success. If Agile audits
result in more timely and material results, they will
probably not only be accepted, but also preferred.
As discussed earlier, the potential is there because
Agile audits can save time and, hence, afford more
time for material issues. A great deal depends, of
course, on the actual execution, which supports the
importance of a competent team and leadership.
This, however, is no different from traditional audit
management.

Figure 2 compares Agile and non-Agile audits.

Of course, whatever audit methodology is selected
must be approved by the enterprise.

Agile Audit Guidelines

Although each audit may have its own unique
characteristics, some of the Agile audit guidelines
include:

• Strive to gain an early understanding of the key
audit issues and disseminate this information

Figure 2—Pros and Cons of Agile and Non-Agile Audits

Audit Aspect Agile Non-Agile

Audit duration Fast Slow

Audit quality Generally better, as more time can
be devoted to material issues

More challenging, especially for
complex audits

Audit complexity Generally needs more highly
qualified auditors

Can be executed by less qualified
auditors who get a list of detailed
steps

Audit flexibility Easier to adapt to changes in risk
evaluation

Needs a formal audit program
revision

Leadership Generally more important, at least
during the initial stages

More democratic, as all team
members participate more or less
equally (in principle) to planning

Interference with auditees’ time In principle, may involve more
short meetings with auditees

In principle, fewer, but longer
meetings assuming all goes well

Source: S. Alexiou. Reprinted with permission.

Enjoying
this article?

• 	Learn more about,
discuss and
collaborate on
audit tools and
techniques in the
Knowledge Center.
www.isaca.org/
it-audit-tools-and-
techniques

ISACA JOURNAL VOL 2 9

iaonline.theiia.org/can-we-make-internal-
auditing-agile

	 5	� Prickett, R.; “Agile Auditing,” Audit & Risk,
10 July 2015, http://auditandrisk.org.uk/features/
agile-auditing

	 6	� Darlison, T.; “Agile Auditing—What It Means
and How to Do It,” presented at IIA Annual
Conference, September 2015, https://www.iia.
org.uk/media/1431921/tony-darlison-day-1.pdf

	 7	� Hancock, B.; “Agile Audit,” The Ohio State
University, USA, 31 May 2015, https://u.osu.
edu/auditagile/

	 8	� Spencer, A.; “Suncorp—Agile and Internal
Audit!,” AgileBusinessManagement.org,
3 December 2013, http://agilebusiness
management.org/content/suncorp-
%E2%80%93-agile-and-internal-audit

	 9	 �Ibid.
	10	� Op cit, Prickett
	11	� Op cit, Darlison
	12	� Op cit, Hancock
	13	� Op cit, Spencer
	14	� Op cit, Prickett
	15	� Chambers, R.; “Drive-by Auditing: Don’t Be

Guilty of ‘Hit and Run,’” Internal Auditor,
2 August 2012, https://iaonline.theiia.org/drive-
by-auditing-dont-be-guilty-of-hit-and-run

	16	� Berkowitz, A.; R. Rampell; “Drive-by Audits
Have Become Too Common and Too
Dangerous,” The Wall Street Journal,
9 August 2002, www.wsj.com/articles/
SB1028822538710052160

	17	� Marks, N.; “The Agile Internal Audit
Department,” Resolver, 2014, http://resolver.
com/wp-content/uploads/2014/06/The-agile-
internal-audit-department-Norman-Marks-
Resolver-2014.pdf

accommodate a short time to discuss one finding
than a much longer time to discuss a number of
findings. If a finding is verified, include it in the
draft report and update the report as verified
findings become available. This way, report writing
time is also shortened.

• Shift resources if necessary. If a team member
finishes with work, perhaps because the data
needed were available first, that team member can
be available to aid another member.

Conclusion

Audits, being essentially a project, can employ the
highly efficient methods from Agile development
for all but compliance audits. These methods are
especially appropriate for complex audits and
require a team of competent and experienced
auditors. Auditors must remember that the bottom
line is to add business value. If a methodology
serves this end, then it should be embraced. If it
is a hindrance, it should be dropped. With rising
requirements on internal audit, namely, to provide
timely assurance on material issues,17 Agile
methods in audit can be of great help.

Endnotes

	 1	� Agile, “Manifesto for Agile Software
Development,” 2001, http://agilemanifesto.org/

	 2	� ISACA®, CISA® Review Manual, 23rd Edition,
USA, 2013, p. 191

	 3	� Srinivasan, S.; Advanced Perl Programming,
First Edition, O’Reilly Publishing, USA, August
1997

	 4	� Saint, C.; “Can We Make Internal Auditing
“Agile”?,” Internal Auditor, 2 July 2014, https://

