
ISACA JOURNAL VOL 1 1
©2017 ISACA. All rights reserved. www.isaca.org

server to which access is granted; the corresponding
private key is configured as an identity key on the
server from which access is granted.

Access authorization using authorized keys
and identity keys uses what is called public key
authentication in the SSH protocol. In essence, the
client digitally signs a session-specific value using
the identity key and the server uses the authorized
key to verify the digital signature.

Locks and Keys

Analogous to the physical world, one can think of
each user account on a server as having a lock,
and the password and authorized keys identify the
keys that open the lock. Usually, there is only one
password per account, but there can be any number
of authorized keys. Identity keys are like physical
keys; just as a physical key opens a lock, an
identity key enables logging into the account at the
operating-system level. Management of SSH keys,
then, is a control issue because the access they
provide is often overlooked.

In more technical detail, on most Unix/Linux
systems, the authorized keys for each account
are listed in the $HOME/.ssh/authorized_keys file,
and the identity keys are usually stored in a user’s
$HOME/.ssh directory (but can be anywhere, even
offline). This means that it is possible to audit which
keys are given access to each server and account,
but it will never be possible to fully determine who
has a copy of the private key. Many hackers say that
private keys are the first thing they collect because,
if the system owner does not manage them properly,

Secure Shell (SSH), also known as Secure
Socket Shell, is a cryptographic network protocol
for operating network services securely over
an unsecured network. SSH keys resemble
passwords in that they permit privileged access
to systems at the operating system level for users
or other applications. SSH keys are used for
automation, backups, data copying, application
integration, automation and systems management.
Mismanagement of these keys represents a
significant security risk of which chief information
security officers (CISOs) must be aware so they can
be prepared to take action to prevent misuse and
data losses.

SSH implementations are preinstalled in all Unix,
Linux and Mac systems and are widely used on
Windows, routers and telecommunications networks
as well. Thus, SSH has become the tool of choice
for automated access between systems, commonly
implemented by system administrators without any
higher controls or audits. Many organizations do
not even have a policy regarding SSH key-based
access.

SSH keys grant access to systems in the same
way that passwords do, but without the need
for a password to be entered. In fact, one can
think of SSH keys as more elaborate passwords,
implemented using public key cryptography. A
public-key is configured as an authorized key on a

What Every CISO Must
Know About SSH Keys

Tatu Ylonen
Is chief executive officer and board member of SSH Communications
Security, and author of US National Institute of Standards and
Technology Internal Report 7966, Security of Interactive and
Automated Access Management Using Secure Shell (SSH), and
several Internet Engineering Task Force standards. Ylonen is an
inventor and holds more than 30 US and international patents,
including several patents on major telecommunications standards.
Prior to his current position, Ylonen held various roles including chief
operating officer and chief technology officer.

 SSH keys grant
access to systems
in the same way
that passwords do,
but without the
need for a password
to be entered.

featurefeature

ISACA JOURNAL VOL 1 2
©2017 ISACA. All rights reserved. www.isaca.org

There is a lot of SSH key-based access inside
most organizations. There is also a surprising
amount of it in Windows environments. There are
stunning numbers of SSH keys that grant access—
there could be 10-50 times as many as there are
usernames and passwords (employees) in the
organization. What needs to be done to keep these
keys safe?

Granting Access

Prudent information security starts with controlling
who can access systems. It is necessary to know
who is given legitimate access, i.e., who is managing
users and credentials (whether they be passwords,
certificates, smartcards or SSH keys). Enterprises
should give access only when there is a legitimate
need, give only the least amount of access needed
to perform the task, and terminate the access when
it is no longer needed, the employee leaves or the
contract with a third party ends. These guidelines
are common sense, and they are mandated in,
for example, the US Federal Information Security
Management Act (NIST SP 800-53r4 AC-2, AC-
6, PS-4), Payment Card Industry Data Security
Standard (Sections 7.1, 8.1, 6.4.1), the US Health
Insurance Portability and Accountability Act (CFR
164.308), North American Electric Reliability
Corporation Critical Infrastructure Protection
(CIP-003-3 R5), and COBIT®. Credentials for
root and service accounts must also be properly
managed and are often more critical than normal
user credentials.

Failure to control who can access systems and
to properly terminate access when it is no longer
needed is reckless and negligent. US law (33
USC 3552[b][3]) defines information security as
“protecting information and information systems
against unauthorized access, use, disclosure,
disruption, modification, or destruction in order to
provide … integrity … confidentiality … availability.”1
None of these objectives is achieved if SSH key-
based access is not properly controlled.

In many organizations, system administrators install
new SSH keys at will whenever convenient. These

private keys are probably the least risky way (to the
hacker) of leaving a backdoor into a system.

On Windows, private-key storage is highly specific
to the SSH server software being used and can be
checked only by using implementation-specific tools
or SSH key management tools.

The primary reason for using public-key
authentication is that it allows unattended access.
Nobody needs to be present to type a password.
The identity key is usually stored in a file, and
anyone with access to that file can log into any
server with the corresponding authorized key
or execute commands on that server. The most
common application of this is automated file
transfers. Other kinds of systems management
automation are also very common. Tools such as
Puppet, Chef, Ansible, Bladelogic and many file
transfer solutions use SSH public key authentication
internally. The SSH File Transfer Protocol (SFTP) runs
over SSH.

To give an idea of the scope of SSH usage, one
typical major bank that the author worked with
closely has more than five million automated key-
based SSH logins every day, as determined from
syslog data. It would not be possible to run modern,
large, highly integrated IT systems without SSH and
the associated automation. That pairing is scattered
throughout thousands and thousands of scripts and
hundreds of application teams.

There is also another kind of SSH key: the host key.
It is used for authenticating hosts rather than users,
and its primary purpose is man-in-the-middle attack
prevention. Without the host key (or if the host key is
not properly managed), an attacker can fool a client
to connect to an intermediate server and send a
password to the intermediate server. The intermediate
server can then steal the password and make a
connection to the end server so that the user does
not notice anything. Cain & Abel, jmitm2 and sshmitm
are popular tools for such attacks. It is important to
properly manage host keys to prevent password
stealing. Public key authentication with authorized
keys, however, is not vulnerable to this attack.

ISACA JOURNAL VOL 1 3
©2017 ISACA. All rights reserved. www.isaca.org

or from one data center to another. This violates
the principle of least privilege access and breaks
internal boundaries, allowing attacks to spread from
one server to another and from one data center to
another—sometimes also to disaster recovery and
backup systems.

An additional issue is that many organizations do not
restrict automated access from test and development
systems to production. Such DEV->PROD access is
expressly forbidden by, for example, the Singapore
Monetary Authority rules.2 It is also common sense
to limit this type of access; test and development
systems do not have the same level of security as
critical production systems, and if someone can log in
from a test system to a production system without a
password, the production system is no more secure
than the test system. Such access also violates
separation of duties.

Best Practices in Key Management

Due to the highly technical and distributed nature of
SSH keys, they have been ignored by many auditors.
Only in recent years have they started to get more
attention and their impact properly understood. Given
that the author has seen that, in many organizations,

keys may be installed without approvals from the
involved application teams and without any (reliable)
registry of them. At the other end of the spectrum,
the author has interacted with an enterprise that
has a 15-person dedicated, centralized security
administrator team installing SSH keys.

In the author’s experience, about 10 percent of
configured authorized keys grant root access.
The exact percentage varies from organization to
organization. In almost all organizations, the total
number of authorized keys is equal to five to 50
times the number of employees.

The author’s analysis of how the existing SSH
keys are being used (using syslog data and other
information) shows that, in many cases, about 90
percent of the configured authorized keys are no
longer being used at all. This may occur because
the employee associated with a specific key left or
perhaps because the integration need, audit or other
purpose for which the key was installed has ceased
to exist, but the access was never terminated.

Lack of Restriction Creates Risk

SSH keys allow restricting privileges that are given to
them using command restrictions (the “command=”
option in $HOME/.ssh/authorized_keys). System
administrators rarely restrict what can be done on a
host to any specific command, instead allowing for
unrestricted jumping from one host to another, from
one information system or application to another,

 In many
organizations, system
administrators install
new SSH keys at
will whenever
convenient.

ISACA JOURNAL VOL 1 4
©2017 ISACA. All rights reserved. www.isaca.org

Many people also want to add source restrictions
(“from=” option in the authorized_keys file) to limit
the hosts from which a key can be used. This
restriction does not protect against active network-
level attacks, but it can make the use of stolen
identity keys more difficult.

Key sizes and algorithms are not central in this
context. While security policies should state
sufficient key sizes (e.g., at least 2048-bit RSA),
any default key size is still probably acceptable or
at least a much smaller risk than having thousands
of unaudited authorized keys. Even the first SSH
versions created 1024-bit RSA keys by default, and
while this is no longer recommended, the key size is
not really a security risk in this use case.

SSH key management is also not a traditional
privileged access management issue. SSH keys
are primarily an automation tool and access
configuration tool. Furthermore, anyone with access
to an identity key can bypass the jump server of a
privileged access management system and log in
directly to the destination host. Putting private keys
in a vault does not solve the real problem (but it does
prevent having to manage them with any other tool,
which would create vendor lock-in). A real solution
requires addressing authorized keys.

A Coordinated Effort

SSH key management can best be tackled by
the core security teams. They understand the
implications of access between systems, look at
the overall situation in the organization and have
the required policy-setting authority. SSH key

more than 90 percent of credentials granting access to
production servers are SSH keys, it is clear that they
cannot continue to be ignored. Leading IT auditors are
becoming more savvy with SSH keys.

The following steps can be taken to keep SSH
keys secure:

1. The issue of unmanaged SSH keys must be
recognized and someone must be assigned the
responsibility for looking into it. Otherwise, it will
fall through the cracks, resulting in no resolution
and continued risk for the enterprise.

2. The organization’s SSH key situation must be
assessed. A proper audit can provide a thorough
picture; however, at this time external auditors
only sample the environment.

3. Existing keys must be taken under control. This
includes:
– Discovering all authorized keys (and identity

keys to the extent possible) in the environment
– Remediating the existing situation’s

vulnerabilities. This includes (among other
things) identifying and removing keys that are
no longer used and identifying a legitimate
business need and responsible person/team for
each remaining authorized key.

– Identifying and eliminating access from test and
development systems to production/disaster
recovery (or, in the rare cases where it is to
remain, properly justifying, understanding and
documenting the access)

4. A process and policy must be established
for requesting, approving, configuring and
terminating new keys.

5. Eventually, all existing keys must be changed
(rotated) so that who has copies of them can
be known.

What Matters in Key Management

Software is almost always needed for implementing
SSH key discovery, remediation and monitoring.
Many organizations also want to move private keys
to root-owned locations (under/etc or/var) to prevent
application administrators and ordinary users from
adding uncontrolled authorized keys (key lock-down).

 SSH key
management can
best be tackled by
the core security
teams.

ISACA JOURNAL VOL 1 5
©2017 ISACA. All rights reserved. www.isaca.org

Endnotes

1 Government Printing Office, Federal Information
Security Modernization Act of 2014, USA,
December 2014, https://www.gpo.gov/
fdsys/pkg/PLAW-113publ283/html/PLAW-
113publ283.htm

2 Monetary Authority of Singapore, Guidelines on
Risk Management Practices—Internal Controls,
March 2013, www.mas.gov.sg/~/media/MAS/
Regulations%20and%20Financial%20Stability/
Regulatory%20and%20Supervisory%20
Framework/Risk%20Management/RMG%20
Internal%20Control_1%20Apr%202013

3 Ylonen, T.; P. Turner; K. Scarfone; M. Souppaya;
NISIR 7966 Security of Interactive and
Automated Access Management Using Secure
Shell (SSH), October 2015, http://nvlpubs.nist.
gov/nistpubs/ir/2015/NIST.IR.7966.pdf

management is an access management issue.
The main challenge with it is that many access
management professionals are too focused on
passwords and integration to human resource
systems to understand the automation aspects of it.
Platform engineering teams (e.g., Unix engineering)
are probably able to understand automation
aspects. It is not really an encryption or public key
infrastructure (PKI) issue, even though those teams
would be familiar with the concept of a key pair.

In practice, an SSH key management project needs
cooperation from security, access management,
compliance, Unix engineering, Unix operations,
Windows operations and application teams. Often,
risk management or audit is also involved. Someone
with sufficient authority to begin this effort—the
CISO makes the most sense in this context—needs
to support the project. The US National Institute of
Standards and Technology Internal Report (NISTIR)
7966 is a useful resource for enterprises beginning
the process of securing their SSH keys.3

