
The Internet of Things (IoT) is an evolving concept
and is described in various ways, one of the most
common being “an infrastructure of interconnected
objects, people, systems and information
resources.”1 It is obvious to practitioners, however,
that IoT is not a new concept. It is a new paradigm
that is created and realized through the use of old
concepts, methods and tools that have been around
for many years in the world of IT and computing.
Some of these concepts include remote function call
and remote code execution.

From a security perspective, however, IoT exhibits new
features and characteristics, such as the need to share
additional types of data and operations. In contrast
with older systems, IoT devices receive various types
of inputs from other devices in the form of data and
remote commands.2, 3 IoT devices (e.g., smart locks
or printers) are required to run a set of commands
that are sent to them by remote entities, such as
phones, on the same network or fetch utility libraries

that are placed on scattered servers (e.g., JavaScript
libraries). It is common for IoT devices to receive a set
of machine instructions or commands for updates to
the software that controls the physical device (e.g.,
firmware) or instructions to tell the device what exactly
needs to be done. In technical terms, the devices can
use well-known methods of remote procedure call,
remote method invocation, dynamic class loading, and
download of shared libraries and objects.

This article focuses on the security requirements
around remote code execution, which means
receiving and running code/commands from another
system on the same network. In the case of IoT,
this amounts to a device (the source of instructions)
being able to control a connected “thing” from
anywhere in the world. Used maliciously, remote
code execution is a serious threat. It is sought after
by hackers: being able to control a machine to do
anything. Think, for example, of a malicious person
being able to remotely control connected cars,
medical devices or power plant control systems.

The article investigates security requirements of
traditional remote code execution techniques in
light of threat modeling results and expounds on
the sections of security compliance regulations that
stipulate those requirements.

Types and Scenarios of Remote
Code Execution

Remote code execution is an umbrella term used
for various types of code sharing in which an entity
requests or receives some code and runs the code
in its own environment. These are the common
scenarios in which remote code execution occurs:

1. Use of common utility libraries placed on a
remote server (e.g., JavaScript libraries). The
functions are fetched from the server, but run on
the client (e.g., the browser).4

2. Dynamic loading of (compiled) classes. An
example is Java dynamic class loading, which
involves loading the binary form of a class (from a
file or network location) that has been previously
compiled from the source code.5

Inquiring Into Security
Requirements of Remote Code
Execution for IoT Devices

Farbod Hosseyndoust Foomany, Ph.D.
Is a senior application security researcher (technical lead) at SD Elements/
Security Compass. Foomany has been involved in various academic
research and industry projects in the area of secure software development,
secure design for enterprise applications, signal processing and evaluation
of biometric verification systems. Foomany is currently involved in a project
that aims to investigate and formulate the security requirements of the IoT
systems.

Ehsan Foroughi, CISM, CISSP
Is the vice president of the SD Elements division at Security Compass.
Foroughi is an application security expert with more than 10 years of
management and technical experience in security research and an extensive
product management, development and reverse-engineering background.
Prior to joining Security Compass, he managed the vulnerability research
subscription service for TELUS Security Labs (previously Assurent).

Rohit Sethi
Is a specialist in software security requirements. He has helped improve
software security at some of the world’s most security-sensitive
organizations in financial services, software, e-commerce, health care,
telecommunications and other industries. In his current role, Sethi manages
the SD Elements team at Security Compass. Sethi has appeared as a
security expert on television outlets such as Bloomberg, CNBC, FoxNews,
CBC, CTV and BNN. Sethi has spoken at numerous industry conferences.

Do you have
something
to say about
this article?
Visit the Journal
pages of the ISACA
web site (www.isaca.
org/journal),find the
article and click on
the Comments link to
share your thoughts.

ISACA JOURNAL VOL 41

ISACA JOURNAL VOL 4 2

featurefeature

as the device-specific commands (mentioned
in scenario 5).There are also other standard and
proprietary control commands that could be sent
to devices according to IoT protocols.13, 14

7. Executable code embedded in files. Examples
include code in the form of Postscript, ActiveX
and Macros and embedded in files such as
Microsoft Word, Microsoft Excel, PDF and Adobe
Flash. The code is transmitted as part of the file
and is executed at the destination. This concept
is explained under the title of “mobile code” in
American National Standards Institute (ANSI)/
International Society of Automation (ISA) 6244315
and NIST 800-5316 compliance regulations.

Threat Modeling of Remote
Code Execution

Figure 1 displays a simple data flow diagram
as recommended by the Open Web Application
Security Project (OWASP) application threat
modeling method.17 The diagram shows the
common elements of the described scenarios. The
source of remote code is either a shared location
(e.g., world-writeable locations on Android devices
when dynamic class loading is used) or remote
locations (e.g., a server on the Internet when a
JavaScript library is loaded). A process or device
(e.g., an IoT-embedded device) will eventually host
and run the remote code. To determine the place of
remote code and fetch data, a location resolution

3. Object serialization.6 Also known as marshaling,
object serialization involves turning the object
(structure, functions and attributes) into a
new format (e.g., a byte stream) that could be
easily transmitted and stored. Serialization and
deserialization (sometimes called unserialization)
is implemented in many languages such as Java7
and C#.8 JavaScript Object Notation (JSON) is
built on the same concept; however, the goal of
JSON is primarily data transfer rather than running
remote code. Note that in this scenario, there is
an instance of the class (an object with a set of
properties) being transmitted. It is different from
dynamic class loading in which the class (the
binary) is loaded (usually only the structure, code
and constants, and not a particular instance).

4. Remote procedure calls (RPC) or remote
method invocation (RMI). There are numerous
RPC protocols from older methods based on
Common Object Request Broker Architecture
(CORBA)9 and Open Software Foundation
(OSF) RPC to newer models of Java application
programming interfaces (API) for Extensible Markup
Language (XML)-based RPC (JAX-RPC) and
JAX-WS (Java API for XML-based web services).10
Calling web services such as Simple Object
Access Protocol (SOAP) and Representational
State Transfer (REST) web services11 could also be
considered a special case of RPC. However, note
that if the code runs on the host (e.g., server) and
only the result is passed to the requesting device,
the process will not qualify as RPC.

5. Device-specific operational commands.
This includes commands sent to a device or an
embedded system to carry out a sequence of
tasks. One example is commands in the form of
HP Printer Job Language (PJL).12 It is foreseeable
that these types of proprietary and standard
protocols will emerge and become widespread
for numerous devices and applications as
IoT matures.

6. Device-specific control commands (including
firmware update commands). Firmware
and basic input/output system (BIOS) update
commands are very common for IoT devices, and
the code may be received on the same channel

 Remote code execution is an
umbrella term used for various
types of code sharing in which an
entity requests or receives some
code and runs the code in its own
environment.

middle attacks can also facilitate misrepresentation
of spoof code as original code. These threats
are relevant to all seven types and scenarios of
remote code execution described in the
previous section.

• Tampering with data—Any form of data tampering
in transit or at rest (e.g., tampering with data through
man-in-the-middle attacks) can fall under this
category. A specific form of this vulnerability occurs
when the code is loaded from a shared or world-
accessible location (e.g., universal serial bus [USB]
storage connected to a PC or a world-writeable
location on an Android SD card). Tampered data, if
handled by typical remote code execution libraries
(such as the deserialization libraries outlined in
scenario 3 described earlier) without additional
protection measures, can lead to malicious code
execution similar to those reported for Apache
Commons libraries.20

• Information disclosure—Any confidential data
that are transmitted as part of an object (e.g.,
properties of a C# serialized object that constitute
a person’s health record) are vulnerable to
unauthorized disclosure (especially for scenarios 3
and 4). Some of the serialization/deserialization
or RPC steps are delegated to the libraries that
do not use encrypted channels. Developers
may be unaware of the underlying mechanisms
used by those libraries (e.g., if a particular
library uses an encrypted channel for remote
procedure calls).

• Denial-of-service—The availability of a system
that executes remote code can be threatened
by malicious code. A simple form of attack may
involve creating huge payloads and sending them
to the system as code. This can occur in all seven
scenarios. Even if the system carries out integrity
checks, a large amount of data can hinder normal
operation of the system and can eventually lead to
denial of service. Additional threats to availability
are overreliance on a remote resource and
lacking fail-safe procedures when that resource is
unavailable. Another major vulnerability emerges
from the use of third-party libraries that lack DoS
protection.

service is utilized. For example, in the case of files
in shared locations, the operating system can
handle the requests and send them to the right
resource. For Internet access, domain name servers
translate the resource’s address to an Internet
Protocol (IP) address.

One important idea displayed in figure 1 is that there
are two conceivable flow directions. In some cases,
the host/device initiates the request for the remote
code. In others, the device receives the commands
even though it has not necessarily initiated the
request. For example, a printer may have a
channel for receiving remote commands for
performing various jobs.

Using spoofing identity, tampering with data,
repudiation, information disclosure, denial-of-service
(DoS), and the elevation of privilege (STRIDE) threat
modeling technique, the security threats of remote
code execution can be classified and summarized
as follows:18

• Spoofing identity—Domain name system (DNS)
spoofing can cause requests for one resource to
be sent to another.19 Other types of man-in-the-

Figure 1—Flow Diagram of Typical Forms
of Remote Code Execution

Source: Farbod H. Foomany, Ehsan Foroughi and Rohit Sethi. Reprinted with permission.

Location Resolution
Through DNS, OS or

Other Methods

Remote Code

Code Container Response Process
or

Device
External Command to

Run Remote Instructions

Remote or Shared
Location Device or Process Boundaries

Request
for Remote Code

ISACA JOURNAL VOL 43

ISACA JOURNAL VOL 4 4

• Obscuring or obfuscating code and objects.
Binaries of compiled classes are easy to reverse
engineer. By using decompilers, hackers can
obtain the original code and any constants in the
code. Obfuscation is not a panacea, but it
adds a layer of defense, i.e., it should not be
treated as the sole security measure. More
information on this can be found in documents
relating to the OWASP project on code
reverse engineering.22

• Communicating through an encrypted channel
(e.g., Secure Sockets Layer [SSL]/Transport Layer
Security [TLS] channels). It is important to keep
an eye on the studies of SSL/TLS vulnerabilities
and apply the result of those studies. There are
several guidelines on the types of encrypted
channels to use and what to avoid.23 For example,
SSL v2.0 and 3.0 are not secure, and SSL
libraries need constant updates due to various
vulnerabilities that are regularly discovered (e.g.,
Heartbleed, Browser Exploit Against SSL/TLS
[BEAST], Factoring RSA Export Keys [FREAK]
and Compression Ratio Info-leak Made Easy
[CRIME] attack vector). An IoT device with no
update capability will become insecure in no
time. Implementing SSL/TLS on low-complexity

• Elevation of privilege—There are numerous
situations in which insecure remote code execution
can lead to elevation of privileges. For example,
Android applications can dynamically load Java
classes (scenario 2). The application that loads the
classes passes all of its permissions to the class
that it is running. The loaded class receives the
application’s permissions and privileges since the
code is running in a new environment. Another
example is if a device does not discriminate
between various channels from which it receives
commands (e.g., it does not separate its firmware
update channel from the channel dedicated to its
normal job), there is a risk of using permissions
of one channel to perform unauthorized activities
(scenarios 5 and 6).21 Third-party libraries may also
be a vulnerability.

• Repudiation—Any other vulnerabilities can create
opportunity for repudiation.

Figure 2 depicts threats under various categories
and also shows their relation to the security triad of
confidentiality, integrity and availability. Based on all
the identified threats and vulnerabilities, this article
provides eight rules of remote code execution that
mitigate these areas of security risk.

A Prescriptive Approach to Securing
Remote Code Execution

This section outlines a set of security requirements
that mitigate the risk and threats relating to low-
complexity IoT devices.

1. Encrypt fields, obfuscate classes and use
encrypted channels. This requirement stems
from the goal of confidentiality and the possibility
of information disclosure. There are several
ways to maintain the confidentiality of the
data transmitted as part of objects or
procedures by:

• Encrypting individual fields (e.g., properties
of the objects). Secure key management and
distribution, especially for stand-alone devices,
is an important undertaking in this case.

Figure 2—Security Threats of Remote Code Execution

Source: Farbod H. Foomany, Ehsan Foroughi and Rohit Sethi. Reprinted with permission.

Spoofing Identity

Data Tampering
(Integrity)

Information Disclosure
(Confidentiality)

Elevation of Privilege

Denial-of-Service
(Availability)

• Misrepresentation of the code’s source
• Misrepresentation of the network addresses

• Change of code in transit (man-in-the-middle)
• Change of code at rest (world-writeable locations)

• Confidential fields in serialized objects/classes
• Unencrypted channels used by third-party libraries

• Large amount of counterfeit data (code or object)
• Overreliance on remote resouces

• Running malicious code in host’s environment
• Lack of distinction between types of code

6. Separate the channels of code transfer. Make
sure data on ordinary channels of data transfer
(e.g., operational commands for a printer) cannot
be used to carry out malicious remote code
execution. Restrictions of update commands (e.g.,
signature requirements) should be different from
the ones for ordinary commands.

7. Verify that third-party libraries comply with the
previous requirements. Do not feed the libraries
user data unless all the other checks have been
carried out. For example, if the library is used
before size-checking, an organization may make
itself vulnerable to DoS attacks.

8. Avoid overreliance on remote resource and
have a fail-safe plan. Devise an alternate plan
for the situations that the remote resources
become unavailable. If continuing the process
may become impossible due to unavailability of
those resources, design a fail-safe plan.

Figure 3 displays a best practice for object
serialization, in which the transmitted object is
sealed (encrypted), then signed and then
transferred. On the receiver side, the object is
first size checked, then the signature is verified and
finally decrypted.

Relation to Major Security
Compliance Regulations

ANSI/ISA 62443, under security requirement (SR) 2.4
(mobile code), instructs control systems to enforce
usage restrictions on mobile code technologies that
include: preventing the execution of mobile code,
requiring proper authentication/authorization for
origin of the code, restricting mobile code transfer
and monitoring the use of mobile code.26

NIST 800-53r4 in the system and communications
protection section (SC-18, mobile code),
recommends execution of remote code in a
confined environment.27 In the section on system
and information integrity, SI-7 (15), the standard
stipulates code signing and verification.

devices is a challenge that may cause reliance
on solutions a or b mentioned earlier instead of
encrypting the entire stream of data, which is
required by SSL/TLS.

2. Check the size of payload. Before anything
else—even before checking the code signature—
check the payload size and avoid dealing with
large counterfeit lumps of data that are sent as
part of a DoS attack.

3. Sign the code or use protocol-specific
authentication methods. Signing the code
and avoiding running any unsigned code is
the single most important security measure. If
using encrypted channels (e.g., TLS), validate
the certificate and chain of trust. Signed code is
not obviously secure code, but signature, at a
minimum, manifests the integrity of code.24

4. Do not run any part of the code before
checking size and signature. No constructor or
overridden methods should be executed by the
code or any third-party library before all security
checks are performed. For example, a library
contains a set class that handles serialized objects.
The set class should not receive the external inputs
before size/signature checking. It also should not
run any part of the classes (e.g., constructors or
overridden readObject() methods) before the object
is validated.

5. Sandbox the remote code execution process
and memory. Do not let the code run in a
shared memory or storage space to which
other processes have access and vice versa
(especially the update commands). Sandboxing
(direct access to other applications’ storage and
memory) does not protect against any of the
vulnerabilities mentioned so far. However, since
a lack of sandboxing can void other security
measures (such as signature verification),
sandboxing contributes to strengthening other
defense mechanisms. In the case of a BIOS
update, for example, researchers have shown
that a buffer overflow can enable executing the
unsigned portion of the update package.25

Enjoying
this article?

• Learn more about,
discuss and
collaborate on
security trends
in the Knowledge
Center.
www.isaca.org/topic-
security-trends

ISACA JOURNAL VOL 45

ISACA JOURNAL VOL 4 6

and the virtual world and react.” ISO/IEC
JTC 1, “Internet of Things (IoT) Preliminary
Report,” 2014

 2 Athreya, A. P.; B. DeBruhl; P. Tague; “Designing
for Self-configuration and Self-adaptation in
the Internet of Things,” 9th IEEE International
Conference on Collaborative Computing:
Networking, Applications and Worksharing,
CollaborateCom, 2013

 3 Klauck, R.; M. Kirsche; “Chatty Things—Making
the Internet of Things Readily Usable for the
Masses With XMPP,” 8th IEEE International
Conference on Collaborative Computing:
Networking, Applications and Worksharing,
CollaborateCom, 2012

 4 Flanagan, D.; JavaScript: The Definitive Guide:
Activate Your Web Pages, O’Reilly Media Inc.,
USA, 2011

 5 Gosling, J.; et al.; “The Java Language
Specification–Java SE 8 Edition,” Oracle
America, 2014

 6 Deitel, P.; H. M. Deitel; Java for Programmers,
Second Edition, Prentice Hall Professional,
USA, 2011

 7 Ibid.

The vulnerabilities described in this article are among
the Common Weakness Enumeration (CWE)/SANS
top 25 listed vulnerabilities: Download of code
without integrity check (CWE-494) and inclusion
of functionality from untrusted control sphere
(CWE-829).28

The European Banking Authority’s final guidelines on
the security of Internet payments state that software
delivered via the Internet needs to be digitally
signed by the payment service provider.29 In the
Manufacturer Disclosure Statement for Medical
Device Security (MDS2), the manufacturers
are required to declare if the device protects
transmission integrity (TXIG) and if there are any
mechanisms to ensure that the installed code or
update is manufacturer authorized (15-2).30

Conclusion

Sending remote code in various forms to “things”
and asking for instructions by those things,
especially for device and firmware updates,
is common and will become a more common
practice in the IoT ecosystem. Since IoT devices
have interaction with the physical world and,
in many cases, those interactions are remotely
controllable (whether in a thermostat or in the
collision-prevention system of a connected car),
the consequences of bypassing security controls
are immense. Unsafe execution of remote code
can lead to a bypass of safety controls and
can cause physical harm to consumers of IoT
products. Therefore, all security measures and
relevant compliance regulation sections should be
considered before any attempt to design security for
IoT solutions.

Endnotes

 1 ISO/IEC, SWG 5 agreed on this definition of IoT
in 2014: “An infrastructure of interconnected
objects, people, systems and information
resources together with intelligent services to
allow them to process information of the physical

Figure 3—A Secure Three-part Procedure for Object Serialization

Source: Farbod H. Foomany, Ehsan Foroughi and Rohit Sethi. Reprinted with permission.

Sealed
Code/Object

Signed
Code/Object

Check
Size

Check
Signature Decrypt

Third-party
Library?

10 November 2015, https://blogs.apache.org/
foundation/entry/apache_commons_statement_
to_widespread

 21 Cui, A.; M. Costello; S. Stolfo; “When Firmware
Modifications Attack: A Case Study of
Embedded Exploitation,” Presented at the NDSS
symposium, 2013

 22 See OWASP’s Reverse Engineering and
Code Modification Prevention Project,
https://www.owasp.org/index.php/OWASP_
Reverse_Engineering_and_Code_Modification_
Prevention_Project.

 23 Ristic, I.; “SSL/TLS Deployment Best Practices,”
2013, https://www.ssllabs.com/downloads/
SSL_TLS_Deployment_Best_Practices.pdf

 24 Op cit, Cui
 25 Wojtczuk, R.; A. Tereshkin; “Attacking Intel

BIOS,” BlackHat, Las Vegas, Nevada, USA,
30 July 2009

 26 Op cit, ANSI/ISA
 27 Op cit, NIST
 28 Common Weakness Enumeration, “2011 CWE/

SANS Top 25 Most Dangerous Software Errors,”
2011, http://cwe.mitre.org/top25/

 29 European Banking Authority, Final guidelines
on the security of internet payments, 19
December 2014, https://www.eba.europa.eu/
documents/10180/934179/EBA-GL-2014-
12+(Guidelines+on+the+security+of+internet+pa
yments)_Rev1

 30 HIMSS/NEMA, Manufacturer Disclosure
Statement for Medical Device Security, 2013,
www.nema.org/Standards/Pages/Manufacturer-
Disclosure-Statement-for-Medical-Device-
Security.aspx

 8 Hericko, M.; et al.; “Object Serialization Analysis
and Comparison in Java and .NET,” ACM
Sigplan Notices, vol. 38, iss. 8, August 2003,
p. 44-54

 9 Ben-Natan, R.; Corba: A Guide to Common
Object Request Broker Architecture,
McGraw-Hill Inc., USA, 1995

 10 Fisher, M.; et al.; Java EE and .NET
Interoperability: Integration Strategies, Patterns,
and Best Practices, Prentice Hall Professional,
USA, 2006

 11 Richardson, L.; S. Ruby; RESTful Web Services,
O’Reilly Media Inc., USA, 2007

 12 Hewlett-Packard, Printer Job Language
Technical Reference Manual, 2003, www.hp.com

 13 Op cit, Athreya
 14 Op cit, Klauck
 15 ANSI/ISA, Security for Industrial Automation

and Control Systems Part 3-3: System Security
Requirements and Security Levels, USA, 2013

 16 National Institute of Standards and Technology,
Security and Privacy Controls for Federal
Information Systems and Organizations, NIST
Special Publication 800-53r4, USA, 2013

 17 Open Web Application Security Project
(OWASP), “Application Threat Modeling,” https://
www.owasp.org/index.php/Application_Threat_
Modeling

 18 Shostack, A.; Threat Modeling: Designing for
Security, John Wiley & Sons, USA, 2014

 19 Shinder, D. L.; M. Cross; Scene of the
Cybercrime, Syngress, USA, 2008

 20 The Apache Software Foundation Blog,
“Apache Commons Statement to Widespread
Java Object De-serialisation Vulnerability,”

ISACA JOURNAL VOL 434

