
Feature

1ISACA JOURNAL VOLUME 1, 2015

In the early 1990s, the baggage claim system
at Denver International Airport (Colorado,
USA) was designed to automate baggage
handling by using software to direct baggage
contained in unmanned carts running on a
track. Unfortunately, errors in the software that
controlled the baggage claim system resulted in
substantial cost overruns, delayed the opening
of the new airport and eventually resulted in
complete abandonment of the system. The
Denver baggage claim project illustrates the
catastrophic impact a failed software project can
have on an organization.1

An effective software metrics program can
help prevent software project failures, such as the
Denver baggage claim project, by evaluating and
monitoring project progress, thereby helping to
identify problems before they worsen.2 A software
metric provides a quantitative indication of some
attributes of software, such as size, complexity
or quality. Examples of software metrics include
function points, cyclomatic complexity and source
lines of code. The potential of software metrics
to increase control of the software development
process naturally makes the appropriate use
of software metrics a concern for IS auditors.3
Without the appropriate use of software metrics,
the software development process may be loosely
controlled, thereby making it difficult for IS
auditors to assess and monitor risk during
software development.

Although software metrics can provide greater
control over the software development process,
resistance to them has resulted in inappropriate
use and high failure rates for software metric
initiatives.4, 5, 6, 7 More than 80 percent of software
metric initiatives fail within the first 18 months.8
Even when software metrics are used, development
teams often use them inappropriately.9 For
example, despite arguments from the research
community about why source lines of code
(SLOC) are a poor measure of software size,
development teams still commonly use them to
assess productivity and provide cost and schedule
estimates.10 The improper application of a software
metric, such as SLOC, can quickly lead to project
failure if it produces flawed estimates.

One possible reason for resistance to software
metrics is that members of a development team
may not perceive the advantages of using software
metrics. Development teams must perceive
software metrics as useful; otherwise, they may use
them reluctantly and inappropriately.11, 12

Another potential reason for resistance to
software metrics is that different groups involved in
software metrics initiatives (managers, developers
and metrics coordinators) use software metrics
for different reasons, implying that they have
different perceptions about software metrics. When
groups have varying perspectives of a technology,
organizations may experience difficulty developing,
implementing and using the technology.13 These
differences in perception among different
stakeholders on a software metrics initiative could
lead to communication problems and, ultimately,
resistance to use.

Resistance to software metrics initiatives
should concern IS auditors. Strong opposition
to software metrics can result in inappropriate
or unenthusiastic use or even deliberate
obstruction of software metrics initiatives.
Inappropriate or unenthusiastic use, in turn, may
result in a less-controlled and riskier software
development process. Since software metrics
mitigate risk and increase control of the software
development process, IS auditors should ensure
that development teams use software metrics
appropriately and determine whether groups
within development teams perceive the benefits
of software metrics differently.

Motivated by these issues, 126 managers,
developers and metrics coordinators were
surveyed to determine whether they understand
the benefits of using software metrics and
whether they perceive the benefits of software
metrics differently. The results suggest managers,
developers and metrics coordinators may not
fully appreciate the benefits of software metrics
and also indicate that these three groups perceive
the benefits of software metrics differently.

IS AUDITORS AND SOFTWARE METRICS
Software development is fraught with risk,
including variations in project scope, time
overruns, cost overruns and inappropriate

David Henderson is assistant

professor of accounting in

the College of Business at the

University of Mary Washington

(Fredericksburg, Virginia,

USA). He can be reached at

dhender3@umw.edu.

Steven D. Sheetz is associate

professor of accounting and

information systems in the

Department of Accounting and

Information Systems in the

Pamplin College of Business

at Virginia Tech (Blacksburg,

Virginia, USA). He can be

reached at sheetz@vt.edu.

Linda Wallace is associate

professor of accounting and

information systems in the

Department of Accounting and

Information Systems in the

Pamplin College of Business

at Virginia Tech (Blacksburg,

Virginia, USA). She can be

reached at wallacel@vt.edu.

Understanding Software Metric Use

Do you have
something
to say about
this article?

Visit the Journal
pages of the ISACA
web site (www.isaca.
org/journal), find the
article, and choose
the Comments tab to
share your thoughts.

Go directly to the article:

2 ISACA JOURNAL VOLUME 1, 2015

resourcing/staffing model management. Software metrics can
help mitigate the risk by serving as effective monitoring tools,
thereby helping to mitigate risk and increase control of the
software development process. For example, software metrics,
such as function points, can help management plan software
development projects, allocate resources, monitor software
project progress, and watch for schedule and cost overruns.14
Other software metrics, such as tracking defects per line of code,
can help development teams ensure high software quality.15

The potential of software metrics to mitigate risk during
the software development process, coupled with the IS
auditor’s responsibility to ensure that the development process
is timely and cost-effective, makes the appropriate use of
software metrics a concern for IS auditors. If development
teams fail to use metrics appropriately, either because they
fail to appreciate the benefits of metrics or because groups
within the development team perceive the benefits of
metrics differently, the development process may be loosely
controlled. Accordingly, IS auditors should ensure that

key software metrics have been established to measure the
performance of the project team and the project and then take
steps to ensure that metrics are used appropriately throughout
the project.16, 17 Furthermore, IS auditors should review
service level agreements (SLAs) to determine if they utilize
metrics that are monitored and measured.18

SURVEY DESIGN
To develop a framework for understanding whether managers,
developers and metrics coordinators understand the benefits
of using software metrics, prior research was reviewed to
uncover the characteristics (i.e., the desirable properties)
of effective software metrics. Figure 1 lists the desirable
properties of software metrics.19

This list of desirable properties formed the basis for the
web-based survey. When completing the survey, respondents
were asked to identify a software metric with which they were
familiar and then respond to the questions developed from
the desirable properties about that software metric. Survey

Figure 1—Desirable Properties of Software Metrics

Desirable Properties
of Software Metrics Definition

No. of
Questions

Automatibility The degree to which the collection of data for the metric and the metric’s calculation are computerized 4

Calculation ease The degree to which the value of the metric is easy to calculate 3

Data availability The degree to which the data required to calculate the metric are readily available given the products and
processes currently used

3

Intuitiveness The degree to which the metric’s behavior conforms to intuition 1

Language independence The degree to which computation of the metric does not depend on the programming language used 3

Life cycle applicability The degree to which the metric can be applied throughout the SDLC 4

Normativeness The degree to which there is a standard, typical or normal range of “acceptable” values for the metric 3

Predictiveness The ability of the software metric to estimate an important attribute to be realized in the future; for
management metrics, the ability of the metric to provide accurate software size and effort estimates; for
quality metrics, the ability of the metric to predict software quality

1

Prescriptiveness The ability of the software metric to not only diagnose problems, but suggest solutions; for management
metrics, the ability of the metric to help diagnose problems in the software development process and
make changes accordingly (e.g., increase resources to improve schedule performance); for quality
metrics, the ability of the metric to help diagnose problems in software quality and recommend solutions
accordingly

4

Sensitivity The degree to which the metric is sensitive to changes in the attribute(s) measured 1

Timeliness The degree to which the metric provides feedback in time to affect the outcome 1

Understandability The degree to which the metric is easy to understand; the degree to which the metric is free of mental effort 2

Validity The degree to which the software metric assesses the attributes it purports to measure; the degree to
which it has been empirically tested and supported

4

3ISACA JOURNAL VOLUME 1, 2015

question responses were measured on a five-point rating
scale ranging from one to five, in which one equaled strongly
disagree, three equaled undecided and five equaled strongly
agree. Figure 2 lists the survey items.

Data were collected from three different sources over
a six-month period. The first source consisted of members

of a computer software metric Usenet group. The second
source included members of the Information Systems Special
Interest Group of the Project Management Institute (PMI-
ISSIG). Additional participants were employees of a large
IT consulting company. The final sample consisted of 126
managers, developers and metrics coordinators.

Figure 2— Survey Items

Desirable Property Survey Item

Automatibility The data required to calculate the measure can be automatically collected.

Automatibility The measure can be calculated by a computer program.

Automatibility A computer program can interpret the measure.

Automatibility Data collection and calculation of the measure can be automated.

Calculation ease The calculation of the measure is straightforward.

Calculation ease The measure is easy to calculate.

Calculation ease* Calculating the measure is often frustrating.

Data availability The data required to calculate the measure are readily available in the current software development environment.

Data availability Analysis of the measure can be performed using data from the existing software development process.

Data availability The measure can be calculated without having to collect additional data.

Intuitiveness The measure behaves according to intuition.

Language independence The measure is programming-language-independent.

Language independence The choice of programming language does not affect the ability to calculate the measure.

Language independence The calculation of the measure is not affected by the differences in programming languages.

Life cycle applicability The measure can readily be used throughout the entire development process.

Life cycle applicability The measure can easily be used repeatedly throughout a development process.

Life cycle applicability The measure can support development in early and later stages.

Life cycle applicability The measure can be easily applied to designs, specifications and software.

Normativeness The measure has a well-known range of acceptable values.

Normativeness The measure has established standards that can be used to interpret measured values.

Normativeness A standard range of values for the measure is known.

Predictiveness The measure improves the ability to predict success.

Prescriptiveness The measure improves the ability to identify problems with the software.

Prescriptiveness The measure makes it easier to identify methods for improving the software.

Prescriptiveness The measure increases the ability to identify new procedures that should be followed.

Prescriptiveness It is easier to solve problems when using the measure.

Sensitivity The measure is highly sensitive to changes in the software.

Timeliness The measure can be used in time to improve the software.

Understandability The measure is easy to understand.

Understandability The use of the measure requires little mental effort.

Validity The measure has been rigorously tested in the field.

Validity The measure has been extensively empirically validated.

Validity The measure is highly credible.

Validity The scale of the measure is appropriate.

*Denotes reverse-coded item

4 ISACA JOURNAL VOLUME 1, 2015

The software metrics identified by the respondents were
categorized as either management or quality metrics, and the
data analysis was conducted along those dimensions. Software
metrics typically used to control the software development
process, such as function points and SLOC, were classified
as management metrics. Software metrics used to monitor
software quality, such as cyclomatic complexity and number of
defects, were classified as quality metrics. Figure 3 shows the
software metrics identified by the participants, their respective
categorization as quality or management, and the percentage
of respondents who identified each software metric.

Figure 3—Software Metrics Identified by Type

After categorizing the metrics identified by the survey
respondents as quality or management, the job codes
provided by each participant as manager, developer or metrics
coordinator were classified. Figure 4 shows position titles
identified by the respondents and their subsequent mapping to
the manager, developer and metric coordinator categories, along
with the percentage of respondents they represent. The average
respondent was 44 years old with 19 years of experience in the
software industry and had used software metrics for 5.8 years.
Of the 126 participants, 62 were managers, 45 were developers
and 19 were metrics coordinators. Managers, developers and
metrics coordinators had approximately the same amount of
experience and were similar in age.

RESULTS
The average scores for each desirable property for each metric
were then analyzed. Figure 5 presents the average scores for
each question for quality metrics. Figure 6 presents the average
scores for each desirable property for management metrics.

As indicated by the scores in figure 5, the average scores for
all groups for all desirable properties except one (intuitiveness)
are slightly higher than three (undecided), suggesting that
while metrics coordinators, developers and managers
generally perceive the value of quality metrics, they do not
overwhelmingly believe in the value of quality metrics. Metrics
coordinators generally have the most favorable perceptions

Quality: 21%

Management: 79%

Complexity
Analysis

1%

Other
Complexity

2%

Source Lines
of Code

21%Cyclomatic
Complexity

1%

Estimated Hours
12%

Estimated Size
6%

Function Points
39%

Number of Defects
18%

Figure 4—Mapping of Job Categories to Manager, Developer and Metric Coordinator Groups

Metrics
Coordinators:

15%

Developers:
• Consultant architect
• Information specialist
• Programmer/analyst
• Senior analyst
• Senior consultant
• Software engineer
• Systems analyst
• Systems architect

Developers: 36%

Managers: 49%

Metrics Coordinators:
• Metrics analyst
• Metrics consultant
• Metrics engineer
• Metrics subject matter expert
• Metrics specialist
• Quality assurance specialist

Managers:
• Project leader
• Program manager
• Business planning manager

5ISACA JOURNAL VOLUME 1, 2015

of quality metrics, as they have the highest average scores
for every desirable property, except for understandability and
predictiveness. It is surprising that developers did not perceive
quality metrics more favorably, given that these metrics are
used to monitor software quality. All three groups indicated
that quality metrics are not intuitive (average is less than
three), suggesting that training programs may be needed in the
beginning of a software metrics implementation.

As shown in figure 6, no scores for any desirable property
for all job codes exceeded four (agree), indicating that these
groups, as a whole, do not completely appreciate the benefits of
management metrics. Similar to the findings for quality metrics,
metrics coordinators typically have more favorable views of
management metrics than managers. Unlike the findings for
quality metrics, developers perceive higher value of management
metrics than managers. This result is counterintuitive given

Figure 5—Average Scores by Desirable Property for Quality Metrics
Property All Job Codes Metrics Coordinators Developers Managers

Automatibility 3.80 4.00 3.81 3.72

Calculation ease 3.91 4.27 3.70 3.92

Data availability 3.80 4.00 3.81 3.72

Intuitiveness 2.89 2.92 2.89 2.92
Language independence 4.11 4.53 3.93 4.08

Life cycle applicability 4.13 4.50 4.19 3.94

Normativeness 3.49 3.93 3.52 3.31
Predictiveness 4.15 4.00 4.11 4.23

Prescriptiveness 3.99 4.15 4.08 3.87

Sensitivity 3.67 4.40 3.33 3.62

Timeliness 4.22 4.60 4.11 4.15

Understandability 3.67 3.60 3.61 3.73

Validity 3.83 4.15 3.75 3.77

Average 3.82 4.08 3.76 3.77

Bold=below 3.5

Figure 6—Average Scores by Desirable Property for Management Metrics

Property All Job Codes Metrics Coordinators Developers Managers
Automatibility 3.21 3.34 2.98 3.35
Calculation ease 3.52 3.90 3.48 3.44
Data availability 3.68 4.19 3.63 3.56

Intuitiveness 2.96 3.07 3.08 2.84
Language independence 3.53 3.24 4.08 3.21
Life cycle applicability 3.99 4.32 4.16 3.78

Normativeness 3.65 3.86 3.62 3.62

Predictiveness 3.79 4.14 3.97 3.55

Prescriptiveness 3.23 3.25 3.38 3.12
Sensitivity 3.55 4.36 3.11 3.63

Timeliness 3.62 3.86 3.75 3.45
Understandability 3.32 3.79 3.18 3.29
Validity 3.91 4.23 3.92 3.81

Average 3.54 3.81 3.57 3.43
Bold=below 3.5

6 ISACA JOURNAL VOLUME 1, 2015

that managers should be more reliant on management metrics
than developers, as these metrics are used for monitoring
productivity. The average scores for management metrics for the
prescriptiveness desirable property are slightly higher than three
(undecided) for all groups. This finding is surprising given that
management metrics should be useful for diagnosing problems
in the software development process (e.g., increase resources to
improve schedule performance); thus, prescriptiveness should
be a main reason for using management metrics. Furthermore,
management metrics are not perceived as intuitive, suggesting
that additional training on management metrics may be useful.

IMPLICATIONS AND RECOMMENDATIONS FOR IS AUDITORS
These results indicate that managers, developers and metrics
coordinators may not fully understand the benefits of
management metrics. Management metrics, such as function
points, should help managers, developers and metrics
coordinators recognize problem areas in the software and
suggest solutions accordingly. Thus, it would be expected
that all three groups would use management metrics for their
prescriptiveness. Interestingly, however, all three groups were
undecided about the prescriptiveness of management metrics.
This finding should be a concern for IS auditors as it suggests
that managers, developers and metrics coordinators may not
fully appreciate the benefits of using management metrics,
which, in turn, may cause inappropriate use of software
metrics.20, 21 Furthermore, all three groups seem to perceive
quality metrics more favorably than management metrics.
Given that management metrics, such as function points,
should be established to monitor and control the systems
development process,22 IS auditors should, therefore, ensure
that members of a development team appreciate the value
of software metrics. IS auditors can accomplish this task via
observation, inquiries, and taking an active, yet independent,
role in the systems development process.23

Previous studies on software metrics have found that
managers perceive software metrics as more useful than
developers.24 On the contrary, this survey found that developers
and metrics coordinators better understand the benefits of
management metrics, more so than managers. Given that
managers use management software metrics, such as function
points to provide software size estimates, it would be expected
that managers, more so than developers, use management
metrics to predict level of effort and software size. Results,

however, indicate that managers do not use management metrics
for their predictiveness or prescriptiveness. This finding is a
concern for IS auditors as it suggests that managers may not
understand the value of management metrics, which could lead
them to use software metrics inappropriately. Using software
metrics inappropriately, in turn, can hinder the ability to control
the software development process and mitigate risk. IS auditors
should, therefore, ensure, via observation and interviewing
techniques, that management understands the value of software
metrics and is using the appropriate software metrics.

Survey results also show that managers, developers and
metrics coordinators perceive the benefits of software metrics
differently. As mentioned previously, metrics coordinators
and developers appear to have more favorable perceptions of
software metrics than managers. IS auditors should be aware
that these groups perceive software metrics differently and
that these differences in perceptions can lead to opposition
against software metrics. IS auditors should monitor the
perceptual differences between these groups and ensure that
these differences in perception do not result in inappropriate
use. Accordingly, IS auditors should take an active role in
the software development process and ensure that effective
communication between different groups on the development
team is occurring and that each group appreciates the values
of the other groups.

CONCLUSION
To raise awareness of the benefits of software metric use
and potentially improve communication among managers,
developers and software metrics coordinators during software
metrics initiatives, organizations should develop integrated
and comprehensive education and training programs.
Education and training efforts should include an overview
of the potential benefits to all groups, followed by a focus
on those characteristics of using software metrics tailored
to each group. For example, metrics coordinators do not
use management metrics for a range of issues important to
managers and developers, including predictiveness; thus,
metrics coordinators could, instead, be instructed on the
predictiveness benefits of management metrics. Additionally,
members of all three groups may benefit from training in
communication techniques that emphasize understanding
the views of others and communicating using the target
audience’s concepts and terminology. IS auditors can play a

7ISACA JOURNAL VOLUME 1, 2015

role in these education and training efforts by ensuring that
metrics coordinators, developers and managers have received
adequate training on the benefits of using software metrics.

Another strategy for increasing the effectiveness of
software metrics initiatives is to use a dedicated metrics
team to facilitate the implementation of software metrics
programs.25, 26 These survey results indicate that metrics
coordinators perceive the value of metrics more than
managers and developers. Metrics coordinators, who
serve as liaisons between managers and developers during
software metrics initiatives, are particularly well positioned
within the organization to fill this role and, hence, can help
managers and developers better understand the benefits of
software metrics. Further, IS auditors should ensure that the
organization has a dedicated metrics team to assist with the
implementation of software metrics initiatives.

Although implementing education and communication
programs may improve awareness of the benefits of software
metrics and potentially increase use, it may be that more
effective software metrics are needed with clearly defined goals.
This survey indicates that quality metrics are not used for their
ability to identify problems with software quality, potentially
implying that managers, developers and metrics coordinators
believe prescriptive quality metrics simply do not exist. Perhaps
efforts should not only be directed toward education and
training, but also toward developing software metrics that more
practitioners perceive as predictive and prescriptive.

ENDNOTES
	1	� Calleam Consulting, “Case Study—Denver International

Airport Baggage Handling System—An Illustration of
Ineffectual Decision Making,” 2008,
http://calleam.com/WTPF/?page_id=2086

	2	� Ewusi-Mensah, K.; “Critical Issues in Abandoned
Information Systems Development Projects,”
Communications of the ACM, vol. 40, iss. 9, 1997,
p. 74-80

	3	� ISACA, CISA Review Manual 2014, USA, 2013,
www.isaca.org/bookstore

	4	� Rubin, H.; “Measure for Measure,” Computerworld,
vol. 25, 15 April 1991, p. 77-78

	5	� Roche, J.; M. Jackson; M. Shepperd; “Software
Measurement Methods: An Evaluation and Perspective,”
3rd Symposium on Assessment of Quality Software
Development Tools, Washington DC, USA, June 1994

	6	� Jones, C.; Applied Software Measurement: Assuring
Productivity and Quality, McGraw-Hill, 1991

	7	� Gopal, A.; M. S.Krishnan; T. Mukhopadhyay;
D. R.Goldenson; “Measurement Programs in Software
Development: Determinants of Success,” IEEE
Transactions on Software Engineering, vol. 28,
iss. 9, 2002, p. 863-75

	8	 Op cit, Rubin
	9	 Ibid.
	10	� Fenton, N. E.; Martin Neil; “Software Metrics: Successes,

Failures and New Directions,” Journal of Systems and
Software, vol. 47, iss. 2 and 3, 1999, p. 149-57

	11	� Hall, T.; Neil Fenton; “Implementing Effective Software
Metrics Programs,” IEEE Software, vol. 14, iss. 2, 1997,
p. 55-65

	12	� Grady, R. B.; Practical Software Metrics for Project
Management and Process Improvement, Prentice Hall,
1992

	13	� Orlikowski, W.; Debra Gash; “Technological
Frames: Making Sense of Information Technology in
Organizations,” ACM Transactions on Information Systems
(TOIS), vol. 12, iss. 2, April 1994, p. 174-207

	14	 Op cit, ISACA, 2013
	15	 Ibid.
	16	 Ibid.
	17	� ISACA, Systems Development and Project Management

Audit/Assurance Program, 2009, www.isaca.org/
auditprograms

	18	 Ibid.
	19	� Henderson-Sellers, B.; Object-Oriented Metrics: Measures

of Complexity, Prentice-Hall, 1996
	20	 Op cit, Hall and Fenton
	21	 Op cit, Grady
	22	 Op cit, ISACA, 2009
	23	� Henderson, D.; “Issues With Auditing the Systems

Development Process,” ISACA Journal, vol. 6, 2008,
p. 42, www.isaca.org/journal

	24	� Sheetz, S. D.; D. Henderson; L. Wallace; “Understanding
Developer and Manager Perceptions of Function Points and
Source Lines of Code,” The Journal of Systems & Software,
vol. 82, iss. 9, 2009, p. 1540-9

	25	� Op cit, Hall and Fenton
	26	� Op cit, Grady

